Metamath Proof Explorer


Theorem elpwpwel

Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023)

Ref Expression
Assertion elpwpwel
|- ( A e. ~P ~P B <-> U. A e. ~P B )

Proof

Step Hyp Ref Expression
1 uniexb
 |-  ( A e. _V <-> U. A e. _V )
2 1 anbi1i
 |-  ( ( A e. _V /\ U. A C_ B ) <-> ( U. A e. _V /\ U. A C_ B ) )
3 elpwpw
 |-  ( A e. ~P ~P B <-> ( A e. _V /\ U. A C_ B ) )
4 elpwb
 |-  ( U. A e. ~P B <-> ( U. A e. _V /\ U. A C_ B ) )
5 2 3 4 3bitr4i
 |-  ( A e. ~P ~P B <-> U. A e. ~P B )