Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpwuni | |- ( B e. A -> ( A C_ ~P B <-> U. A = B ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sspwuni | |- ( A C_ ~P B <-> U. A C_ B )  | 
						|
| 2 | unissel | |- ( ( U. A C_ B /\ B e. A ) -> U. A = B )  | 
						|
| 3 | 2 | expcom | |- ( B e. A -> ( U. A C_ B -> U. A = B ) )  | 
						
| 4 | eqimss | |- ( U. A = B -> U. A C_ B )  | 
						|
| 5 | 3 4 | impbid1 | |- ( B e. A -> ( U. A C_ B <-> U. A = B ) )  | 
						
| 6 | 1 5 | bitrid | |- ( B e. A -> ( A C_ ~P B <-> U. A = B ) )  |