| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-q |
|- QQ = ( / " ( ZZ X. NN ) ) |
| 2 |
1
|
eleq2i |
|- ( A e. QQ <-> A e. ( / " ( ZZ X. NN ) ) ) |
| 3 |
|
df-div |
|- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
| 4 |
|
riotaex |
|- ( iota_ z e. CC ( y x. z ) = x ) e. _V |
| 5 |
3 4
|
fnmpoi |
|- / Fn ( CC X. ( CC \ { 0 } ) ) |
| 6 |
|
zsscn |
|- ZZ C_ CC |
| 7 |
|
nncn |
|- ( x e. NN -> x e. CC ) |
| 8 |
|
nnne0 |
|- ( x e. NN -> x =/= 0 ) |
| 9 |
|
eldifsn |
|- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
| 10 |
7 8 9
|
sylanbrc |
|- ( x e. NN -> x e. ( CC \ { 0 } ) ) |
| 11 |
10
|
ssriv |
|- NN C_ ( CC \ { 0 } ) |
| 12 |
|
xpss12 |
|- ( ( ZZ C_ CC /\ NN C_ ( CC \ { 0 } ) ) -> ( ZZ X. NN ) C_ ( CC X. ( CC \ { 0 } ) ) ) |
| 13 |
6 11 12
|
mp2an |
|- ( ZZ X. NN ) C_ ( CC X. ( CC \ { 0 } ) ) |
| 14 |
|
ovelimab |
|- ( ( / Fn ( CC X. ( CC \ { 0 } ) ) /\ ( ZZ X. NN ) C_ ( CC X. ( CC \ { 0 } ) ) ) -> ( A e. ( / " ( ZZ X. NN ) ) <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) ) |
| 15 |
5 13 14
|
mp2an |
|- ( A e. ( / " ( ZZ X. NN ) ) <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 16 |
2 15
|
bitri |
|- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |