| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elqaa.1 |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | elqaa.2 |  |-  ( ph -> F e. ( ( Poly ` QQ ) \ { 0p } ) ) | 
						
							| 3 |  | elqaa.3 |  |-  ( ph -> ( F ` A ) = 0 ) | 
						
							| 4 |  | elqaa.4 |  |-  B = ( coeff ` F ) | 
						
							| 5 |  | elqaa.5 |  |-  N = ( k e. NN0 |-> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) ) | 
						
							| 6 |  | elqaa.6 |  |-  R = ( seq 0 ( x. , N ) ` ( deg ` F ) ) | 
						
							| 7 |  | cnex |  |-  CC e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 9 | 6 | fvexi |  |-  R e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ( ph /\ z e. CC ) -> R e. _V ) | 
						
							| 11 |  | fvexd |  |-  ( ( ph /\ z e. CC ) -> ( F ` z ) e. _V ) | 
						
							| 12 |  | fconstmpt |  |-  ( CC X. { R } ) = ( z e. CC |-> R ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( CC X. { R } ) = ( z e. CC |-> R ) ) | 
						
							| 14 | 2 | eldifad |  |-  ( ph -> F e. ( Poly ` QQ ) ) | 
						
							| 15 |  | plyf |  |-  ( F e. ( Poly ` QQ ) -> F : CC --> CC ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> F : CC --> CC ) | 
						
							| 17 | 16 | feqmptd |  |-  ( ph -> F = ( z e. CC |-> ( F ` z ) ) ) | 
						
							| 18 | 8 10 11 13 17 | offval2 |  |-  ( ph -> ( ( CC X. { R } ) oF x. F ) = ( z e. CC |-> ( R x. ( F ` z ) ) ) ) | 
						
							| 19 |  | fzfid |  |-  ( ( ph /\ z e. CC ) -> ( 0 ... ( deg ` F ) ) e. Fin ) | 
						
							| 20 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 21 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 22 |  | ssrab2 |  |-  { n e. NN | ( ( B ` m ) x. n ) e. ZZ } C_ NN | 
						
							| 23 |  | fveq2 |  |-  ( k = m -> ( B ` k ) = ( B ` m ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( k = m -> ( ( B ` k ) x. n ) = ( ( B ` m ) x. n ) ) | 
						
							| 25 | 24 | eleq1d |  |-  ( k = m -> ( ( ( B ` k ) x. n ) e. ZZ <-> ( ( B ` m ) x. n ) e. ZZ ) ) | 
						
							| 26 | 25 | rabbidv |  |-  ( k = m -> { n e. NN | ( ( B ` k ) x. n ) e. ZZ } = { n e. NN | ( ( B ` m ) x. n ) e. ZZ } ) | 
						
							| 27 | 26 | infeq1d |  |-  ( k = m -> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) = inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) ) | 
						
							| 28 |  | ltso |  |-  < Or RR | 
						
							| 29 | 28 | infex |  |-  inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) e. _V | 
						
							| 30 | 27 5 29 | fvmpt |  |-  ( m e. NN0 -> ( N ` m ) = inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) = inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) ) | 
						
							| 32 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 33 | 22 32 | sseqtri |  |-  { n e. NN | ( ( B ` m ) x. n ) e. ZZ } C_ ( ZZ>= ` 1 ) | 
						
							| 34 |  | 0z |  |-  0 e. ZZ | 
						
							| 35 |  | zq |  |-  ( 0 e. ZZ -> 0 e. QQ ) | 
						
							| 36 | 34 35 | ax-mp |  |-  0 e. QQ | 
						
							| 37 | 4 | coef2 |  |-  ( ( F e. ( Poly ` QQ ) /\ 0 e. QQ ) -> B : NN0 --> QQ ) | 
						
							| 38 | 14 36 37 | sylancl |  |-  ( ph -> B : NN0 --> QQ ) | 
						
							| 39 | 38 | ffvelcdmda |  |-  ( ( ph /\ m e. NN0 ) -> ( B ` m ) e. QQ ) | 
						
							| 40 |  | qmulz |  |-  ( ( B ` m ) e. QQ -> E. n e. NN ( ( B ` m ) x. n ) e. ZZ ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ph /\ m e. NN0 ) -> E. n e. NN ( ( B ` m ) x. n ) e. ZZ ) | 
						
							| 42 |  | rabn0 |  |-  ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } =/= (/) <-> E. n e. NN ( ( B ` m ) x. n ) e. ZZ ) | 
						
							| 43 | 41 42 | sylibr |  |-  ( ( ph /\ m e. NN0 ) -> { n e. NN | ( ( B ` m ) x. n ) e. ZZ } =/= (/) ) | 
						
							| 44 |  | infssuzcl |  |-  ( ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( ( B ` m ) x. n ) e. ZZ } =/= (/) ) -> inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } ) | 
						
							| 45 | 33 43 44 | sylancr |  |-  ( ( ph /\ m e. NN0 ) -> inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } ) | 
						
							| 46 | 31 45 | eqeltrd |  |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } ) | 
						
							| 47 | 22 46 | sselid |  |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) e. NN ) | 
						
							| 48 |  | nnmulcl |  |-  ( ( m e. NN /\ k e. NN ) -> ( m x. k ) e. NN ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ph /\ ( m e. NN /\ k e. NN ) ) -> ( m x. k ) e. NN ) | 
						
							| 50 | 20 21 47 49 | seqf |  |-  ( ph -> seq 0 ( x. , N ) : NN0 --> NN ) | 
						
							| 51 |  | dgrcl |  |-  ( F e. ( Poly ` QQ ) -> ( deg ` F ) e. NN0 ) | 
						
							| 52 | 14 51 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 53 | 50 52 | ffvelcdmd |  |-  ( ph -> ( seq 0 ( x. , N ) ` ( deg ` F ) ) e. NN ) | 
						
							| 54 | 6 53 | eqeltrid |  |-  ( ph -> R e. NN ) | 
						
							| 55 | 54 | nncnd |  |-  ( ph -> R e. CC ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ z e. CC ) -> R e. CC ) | 
						
							| 57 |  | elfznn0 |  |-  ( m e. ( 0 ... ( deg ` F ) ) -> m e. NN0 ) | 
						
							| 58 | 4 | coef3 |  |-  ( F e. ( Poly ` QQ ) -> B : NN0 --> CC ) | 
						
							| 59 | 14 58 | syl |  |-  ( ph -> B : NN0 --> CC ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ z e. CC ) -> B : NN0 --> CC ) | 
						
							| 61 | 60 | ffvelcdmda |  |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( B ` m ) e. CC ) | 
						
							| 62 |  | expcl |  |-  ( ( z e. CC /\ m e. NN0 ) -> ( z ^ m ) e. CC ) | 
						
							| 63 | 62 | adantll |  |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( z ^ m ) e. CC ) | 
						
							| 64 | 61 63 | mulcld |  |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( ( B ` m ) x. ( z ^ m ) ) e. CC ) | 
						
							| 65 | 57 64 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( B ` m ) x. ( z ^ m ) ) e. CC ) | 
						
							| 66 | 19 56 65 | fsummulc2 |  |-  ( ( ph /\ z e. CC ) -> ( R x. sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) ) | 
						
							| 67 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 68 | 4 67 | coeid2 |  |-  ( ( F e. ( Poly ` QQ ) /\ z e. CC ) -> ( F ` z ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) ) | 
						
							| 69 | 14 68 | sylan |  |-  ( ( ph /\ z e. CC ) -> ( F ` z ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ph /\ z e. CC ) -> ( R x. ( F ` z ) ) = ( R x. sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) ) ) | 
						
							| 71 | 56 | adantr |  |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> R e. CC ) | 
						
							| 72 | 71 61 63 | mulassd |  |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) = ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) ) | 
						
							| 73 | 57 72 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) = ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) ) | 
						
							| 74 | 73 | sumeq2dv |  |-  ( ( ph /\ z e. CC ) -> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) ) | 
						
							| 75 | 66 70 74 | 3eqtr4d |  |-  ( ( ph /\ z e. CC ) -> ( R x. ( F ` z ) ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) ) | 
						
							| 76 | 75 | mpteq2dva |  |-  ( ph -> ( z e. CC |-> ( R x. ( F ` z ) ) ) = ( z e. CC |-> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) ) ) | 
						
							| 77 | 18 76 | eqtrd |  |-  ( ph -> ( ( CC X. { R } ) oF x. F ) = ( z e. CC |-> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) ) ) | 
						
							| 78 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 79 | 78 | a1i |  |-  ( ph -> ZZ C_ CC ) | 
						
							| 80 | 55 | adantr |  |-  ( ( ph /\ m e. NN0 ) -> R e. CC ) | 
						
							| 81 | 47 | nncnd |  |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) e. CC ) | 
						
							| 82 | 47 | nnne0d |  |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) =/= 0 ) | 
						
							| 83 | 80 81 82 | divcan2d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( N ` m ) x. ( R / ( N ` m ) ) ) = R ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( B ` m ) x. ( ( N ` m ) x. ( R / ( N ` m ) ) ) ) = ( ( B ` m ) x. R ) ) | 
						
							| 85 | 59 | ffvelcdmda |  |-  ( ( ph /\ m e. NN0 ) -> ( B ` m ) e. CC ) | 
						
							| 86 | 80 81 82 | divcld |  |-  ( ( ph /\ m e. NN0 ) -> ( R / ( N ` m ) ) e. CC ) | 
						
							| 87 | 85 81 86 | mulassd |  |-  ( ( ph /\ m e. NN0 ) -> ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) = ( ( B ` m ) x. ( ( N ` m ) x. ( R / ( N ` m ) ) ) ) ) | 
						
							| 88 | 80 85 | mulcomd |  |-  ( ( ph /\ m e. NN0 ) -> ( R x. ( B ` m ) ) = ( ( B ` m ) x. R ) ) | 
						
							| 89 | 84 87 88 | 3eqtr4rd |  |-  ( ( ph /\ m e. NN0 ) -> ( R x. ( B ` m ) ) = ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) ) | 
						
							| 90 | 57 89 | sylan2 |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R x. ( B ` m ) ) = ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) ) | 
						
							| 91 |  | oveq2 |  |-  ( n = ( N ` m ) -> ( ( B ` m ) x. n ) = ( ( B ` m ) x. ( N ` m ) ) ) | 
						
							| 92 | 91 | eleq1d |  |-  ( n = ( N ` m ) -> ( ( ( B ` m ) x. n ) e. ZZ <-> ( ( B ` m ) x. ( N ` m ) ) e. ZZ ) ) | 
						
							| 93 | 92 | elrab |  |-  ( ( N ` m ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } <-> ( ( N ` m ) e. NN /\ ( ( B ` m ) x. ( N ` m ) ) e. ZZ ) ) | 
						
							| 94 | 93 | simprbi |  |-  ( ( N ` m ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } -> ( ( B ` m ) x. ( N ` m ) ) e. ZZ ) | 
						
							| 95 | 46 94 | syl |  |-  ( ( ph /\ m e. NN0 ) -> ( ( B ` m ) x. ( N ` m ) ) e. ZZ ) | 
						
							| 96 | 57 95 | sylan2 |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( B ` m ) x. ( N ` m ) ) e. ZZ ) | 
						
							| 97 |  | eqid |  |-  ( x e. _V , y e. _V |-> ( ( x x. y ) mod ( N ` m ) ) ) = ( x e. _V , y e. _V |-> ( ( x x. y ) mod ( N ` m ) ) ) | 
						
							| 98 | 1 2 3 4 5 6 97 | elqaalem2 |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R mod ( N ` m ) ) = 0 ) | 
						
							| 99 | 54 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> R e. NN ) | 
						
							| 100 | 57 47 | sylan2 |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( N ` m ) e. NN ) | 
						
							| 101 |  | nnre |  |-  ( R e. NN -> R e. RR ) | 
						
							| 102 |  | nnrp |  |-  ( ( N ` m ) e. NN -> ( N ` m ) e. RR+ ) | 
						
							| 103 |  | mod0 |  |-  ( ( R e. RR /\ ( N ` m ) e. RR+ ) -> ( ( R mod ( N ` m ) ) = 0 <-> ( R / ( N ` m ) ) e. ZZ ) ) | 
						
							| 104 | 101 102 103 | syl2an |  |-  ( ( R e. NN /\ ( N ` m ) e. NN ) -> ( ( R mod ( N ` m ) ) = 0 <-> ( R / ( N ` m ) ) e. ZZ ) ) | 
						
							| 105 | 99 100 104 | syl2anc |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( R mod ( N ` m ) ) = 0 <-> ( R / ( N ` m ) ) e. ZZ ) ) | 
						
							| 106 | 98 105 | mpbid |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R / ( N ` m ) ) e. ZZ ) | 
						
							| 107 | 96 106 | zmulcld |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) e. ZZ ) | 
						
							| 108 | 90 107 | eqeltrd |  |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R x. ( B ` m ) ) e. ZZ ) | 
						
							| 109 | 79 52 108 | elplyd |  |-  ( ph -> ( z e. CC |-> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) ) e. ( Poly ` ZZ ) ) | 
						
							| 110 | 77 109 | eqeltrd |  |-  ( ph -> ( ( CC X. { R } ) oF x. F ) e. ( Poly ` ZZ ) ) | 
						
							| 111 |  | eldifsn |  |-  ( F e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( F e. ( Poly ` QQ ) /\ F =/= 0p ) ) | 
						
							| 112 | 2 111 | sylib |  |-  ( ph -> ( F e. ( Poly ` QQ ) /\ F =/= 0p ) ) | 
						
							| 113 | 112 | simprd |  |-  ( ph -> F =/= 0p ) | 
						
							| 114 |  | oveq1 |  |-  ( ( ( CC X. { R } ) oF x. F ) = 0p -> ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = ( 0p oF / ( CC X. { R } ) ) ) | 
						
							| 115 | 16 | ffvelcdmda |  |-  ( ( ph /\ z e. CC ) -> ( F ` z ) e. CC ) | 
						
							| 116 | 54 | nnne0d |  |-  ( ph -> R =/= 0 ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ph /\ z e. CC ) -> R =/= 0 ) | 
						
							| 118 | 115 56 117 | divcan3d |  |-  ( ( ph /\ z e. CC ) -> ( ( R x. ( F ` z ) ) / R ) = ( F ` z ) ) | 
						
							| 119 | 118 | mpteq2dva |  |-  ( ph -> ( z e. CC |-> ( ( R x. ( F ` z ) ) / R ) ) = ( z e. CC |-> ( F ` z ) ) ) | 
						
							| 120 |  | ovexd |  |-  ( ( ph /\ z e. CC ) -> ( R x. ( F ` z ) ) e. _V ) | 
						
							| 121 | 8 120 10 18 13 | offval2 |  |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = ( z e. CC |-> ( ( R x. ( F ` z ) ) / R ) ) ) | 
						
							| 122 | 119 121 17 | 3eqtr4d |  |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = F ) | 
						
							| 123 | 55 116 | div0d |  |-  ( ph -> ( 0 / R ) = 0 ) | 
						
							| 124 | 123 | mpteq2dv |  |-  ( ph -> ( z e. CC |-> ( 0 / R ) ) = ( z e. CC |-> 0 ) ) | 
						
							| 125 |  | 0cnd |  |-  ( ( ph /\ z e. CC ) -> 0 e. CC ) | 
						
							| 126 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 127 |  | fconstmpt |  |-  ( CC X. { 0 } ) = ( z e. CC |-> 0 ) | 
						
							| 128 | 126 127 | eqtri |  |-  0p = ( z e. CC |-> 0 ) | 
						
							| 129 | 128 | a1i |  |-  ( ph -> 0p = ( z e. CC |-> 0 ) ) | 
						
							| 130 | 8 125 10 129 13 | offval2 |  |-  ( ph -> ( 0p oF / ( CC X. { R } ) ) = ( z e. CC |-> ( 0 / R ) ) ) | 
						
							| 131 | 124 130 129 | 3eqtr4d |  |-  ( ph -> ( 0p oF / ( CC X. { R } ) ) = 0p ) | 
						
							| 132 | 122 131 | eqeq12d |  |-  ( ph -> ( ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = ( 0p oF / ( CC X. { R } ) ) <-> F = 0p ) ) | 
						
							| 133 | 114 132 | imbitrid |  |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) = 0p -> F = 0p ) ) | 
						
							| 134 | 133 | necon3d |  |-  ( ph -> ( F =/= 0p -> ( ( CC X. { R } ) oF x. F ) =/= 0p ) ) | 
						
							| 135 | 113 134 | mpd |  |-  ( ph -> ( ( CC X. { R } ) oF x. F ) =/= 0p ) | 
						
							| 136 |  | eldifsn |  |-  ( ( ( CC X. { R } ) oF x. F ) e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( ( ( CC X. { R } ) oF x. F ) e. ( Poly ` ZZ ) /\ ( ( CC X. { R } ) oF x. F ) =/= 0p ) ) | 
						
							| 137 | 110 135 136 | sylanbrc |  |-  ( ph -> ( ( CC X. { R } ) oF x. F ) e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 138 | 9 | fconst |  |-  ( CC X. { R } ) : CC --> { R } | 
						
							| 139 |  | ffn |  |-  ( ( CC X. { R } ) : CC --> { R } -> ( CC X. { R } ) Fn CC ) | 
						
							| 140 | 138 139 | mp1i |  |-  ( ph -> ( CC X. { R } ) Fn CC ) | 
						
							| 141 | 16 | ffnd |  |-  ( ph -> F Fn CC ) | 
						
							| 142 |  | inidm |  |-  ( CC i^i CC ) = CC | 
						
							| 143 | 9 | fvconst2 |  |-  ( A e. CC -> ( ( CC X. { R } ) ` A ) = R ) | 
						
							| 144 | 143 | adantl |  |-  ( ( ph /\ A e. CC ) -> ( ( CC X. { R } ) ` A ) = R ) | 
						
							| 145 | 3 | adantr |  |-  ( ( ph /\ A e. CC ) -> ( F ` A ) = 0 ) | 
						
							| 146 | 140 141 8 8 142 144 145 | ofval |  |-  ( ( ph /\ A e. CC ) -> ( ( ( CC X. { R } ) oF x. F ) ` A ) = ( R x. 0 ) ) | 
						
							| 147 | 1 146 | mpdan |  |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) ` A ) = ( R x. 0 ) ) | 
						
							| 148 | 55 | mul01d |  |-  ( ph -> ( R x. 0 ) = 0 ) | 
						
							| 149 | 147 148 | eqtrd |  |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) ` A ) = 0 ) | 
						
							| 150 |  | fveq1 |  |-  ( f = ( ( CC X. { R } ) oF x. F ) -> ( f ` A ) = ( ( ( CC X. { R } ) oF x. F ) ` A ) ) | 
						
							| 151 | 150 | eqeq1d |  |-  ( f = ( ( CC X. { R } ) oF x. F ) -> ( ( f ` A ) = 0 <-> ( ( ( CC X. { R } ) oF x. F ) ` A ) = 0 ) ) | 
						
							| 152 | 151 | rspcev |  |-  ( ( ( ( CC X. { R } ) oF x. F ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( ( CC X. { R } ) oF x. F ) ` A ) = 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) | 
						
							| 153 | 137 149 152 | syl2anc |  |-  ( ph -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) | 
						
							| 154 |  | elaa |  |-  ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) | 
						
							| 155 | 1 153 154 | sylanbrc |  |-  ( ph -> A e. AA ) |