Metamath Proof Explorer


Theorem elqaalem3

Description: Lemma for elqaa . (Contributed by Mario Carneiro, 23-Jul-2014) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses elqaa.1
|- ( ph -> A e. CC )
elqaa.2
|- ( ph -> F e. ( ( Poly ` QQ ) \ { 0p } ) )
elqaa.3
|- ( ph -> ( F ` A ) = 0 )
elqaa.4
|- B = ( coeff ` F )
elqaa.5
|- N = ( k e. NN0 |-> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) )
elqaa.6
|- R = ( seq 0 ( x. , N ) ` ( deg ` F ) )
Assertion elqaalem3
|- ( ph -> A e. AA )

Proof

Step Hyp Ref Expression
1 elqaa.1
 |-  ( ph -> A e. CC )
2 elqaa.2
 |-  ( ph -> F e. ( ( Poly ` QQ ) \ { 0p } ) )
3 elqaa.3
 |-  ( ph -> ( F ` A ) = 0 )
4 elqaa.4
 |-  B = ( coeff ` F )
5 elqaa.5
 |-  N = ( k e. NN0 |-> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) )
6 elqaa.6
 |-  R = ( seq 0 ( x. , N ) ` ( deg ` F ) )
7 cnex
 |-  CC e. _V
8 7 a1i
 |-  ( ph -> CC e. _V )
9 6 fvexi
 |-  R e. _V
10 9 a1i
 |-  ( ( ph /\ z e. CC ) -> R e. _V )
11 fvexd
 |-  ( ( ph /\ z e. CC ) -> ( F ` z ) e. _V )
12 fconstmpt
 |-  ( CC X. { R } ) = ( z e. CC |-> R )
13 12 a1i
 |-  ( ph -> ( CC X. { R } ) = ( z e. CC |-> R ) )
14 2 eldifad
 |-  ( ph -> F e. ( Poly ` QQ ) )
15 plyf
 |-  ( F e. ( Poly ` QQ ) -> F : CC --> CC )
16 14 15 syl
 |-  ( ph -> F : CC --> CC )
17 16 feqmptd
 |-  ( ph -> F = ( z e. CC |-> ( F ` z ) ) )
18 8 10 11 13 17 offval2
 |-  ( ph -> ( ( CC X. { R } ) oF x. F ) = ( z e. CC |-> ( R x. ( F ` z ) ) ) )
19 fzfid
 |-  ( ( ph /\ z e. CC ) -> ( 0 ... ( deg ` F ) ) e. Fin )
20 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
21 0zd
 |-  ( ph -> 0 e. ZZ )
22 ssrab2
 |-  { n e. NN | ( ( B ` m ) x. n ) e. ZZ } C_ NN
23 fveq2
 |-  ( k = m -> ( B ` k ) = ( B ` m ) )
24 23 oveq1d
 |-  ( k = m -> ( ( B ` k ) x. n ) = ( ( B ` m ) x. n ) )
25 24 eleq1d
 |-  ( k = m -> ( ( ( B ` k ) x. n ) e. ZZ <-> ( ( B ` m ) x. n ) e. ZZ ) )
26 25 rabbidv
 |-  ( k = m -> { n e. NN | ( ( B ` k ) x. n ) e. ZZ } = { n e. NN | ( ( B ` m ) x. n ) e. ZZ } )
27 26 infeq1d
 |-  ( k = m -> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) = inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) )
28 ltso
 |-  < Or RR
29 28 infex
 |-  inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) e. _V
30 27 5 29 fvmpt
 |-  ( m e. NN0 -> ( N ` m ) = inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) )
31 30 adantl
 |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) = inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) )
32 nnuz
 |-  NN = ( ZZ>= ` 1 )
33 22 32 sseqtri
 |-  { n e. NN | ( ( B ` m ) x. n ) e. ZZ } C_ ( ZZ>= ` 1 )
34 0z
 |-  0 e. ZZ
35 zq
 |-  ( 0 e. ZZ -> 0 e. QQ )
36 34 35 ax-mp
 |-  0 e. QQ
37 4 coef2
 |-  ( ( F e. ( Poly ` QQ ) /\ 0 e. QQ ) -> B : NN0 --> QQ )
38 14 36 37 sylancl
 |-  ( ph -> B : NN0 --> QQ )
39 38 ffvelrnda
 |-  ( ( ph /\ m e. NN0 ) -> ( B ` m ) e. QQ )
40 qmulz
 |-  ( ( B ` m ) e. QQ -> E. n e. NN ( ( B ` m ) x. n ) e. ZZ )
41 39 40 syl
 |-  ( ( ph /\ m e. NN0 ) -> E. n e. NN ( ( B ` m ) x. n ) e. ZZ )
42 rabn0
 |-  ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } =/= (/) <-> E. n e. NN ( ( B ` m ) x. n ) e. ZZ )
43 41 42 sylibr
 |-  ( ( ph /\ m e. NN0 ) -> { n e. NN | ( ( B ` m ) x. n ) e. ZZ } =/= (/) )
44 infssuzcl
 |-  ( ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( ( B ` m ) x. n ) e. ZZ } =/= (/) ) -> inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } )
45 33 43 44 sylancr
 |-  ( ( ph /\ m e. NN0 ) -> inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } )
46 31 45 eqeltrd
 |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } )
47 22 46 sselid
 |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) e. NN )
48 nnmulcl
 |-  ( ( m e. NN /\ k e. NN ) -> ( m x. k ) e. NN )
49 48 adantl
 |-  ( ( ph /\ ( m e. NN /\ k e. NN ) ) -> ( m x. k ) e. NN )
50 20 21 47 49 seqf
 |-  ( ph -> seq 0 ( x. , N ) : NN0 --> NN )
51 dgrcl
 |-  ( F e. ( Poly ` QQ ) -> ( deg ` F ) e. NN0 )
52 14 51 syl
 |-  ( ph -> ( deg ` F ) e. NN0 )
53 50 52 ffvelrnd
 |-  ( ph -> ( seq 0 ( x. , N ) ` ( deg ` F ) ) e. NN )
54 6 53 eqeltrid
 |-  ( ph -> R e. NN )
55 54 nncnd
 |-  ( ph -> R e. CC )
56 55 adantr
 |-  ( ( ph /\ z e. CC ) -> R e. CC )
57 elfznn0
 |-  ( m e. ( 0 ... ( deg ` F ) ) -> m e. NN0 )
58 4 coef3
 |-  ( F e. ( Poly ` QQ ) -> B : NN0 --> CC )
59 14 58 syl
 |-  ( ph -> B : NN0 --> CC )
60 59 adantr
 |-  ( ( ph /\ z e. CC ) -> B : NN0 --> CC )
61 60 ffvelrnda
 |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( B ` m ) e. CC )
62 expcl
 |-  ( ( z e. CC /\ m e. NN0 ) -> ( z ^ m ) e. CC )
63 62 adantll
 |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( z ^ m ) e. CC )
64 61 63 mulcld
 |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( ( B ` m ) x. ( z ^ m ) ) e. CC )
65 57 64 sylan2
 |-  ( ( ( ph /\ z e. CC ) /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( B ` m ) x. ( z ^ m ) ) e. CC )
66 19 56 65 fsummulc2
 |-  ( ( ph /\ z e. CC ) -> ( R x. sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) )
67 eqid
 |-  ( deg ` F ) = ( deg ` F )
68 4 67 coeid2
 |-  ( ( F e. ( Poly ` QQ ) /\ z e. CC ) -> ( F ` z ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) )
69 14 68 sylan
 |-  ( ( ph /\ z e. CC ) -> ( F ` z ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) )
70 69 oveq2d
 |-  ( ( ph /\ z e. CC ) -> ( R x. ( F ` z ) ) = ( R x. sum_ m e. ( 0 ... ( deg ` F ) ) ( ( B ` m ) x. ( z ^ m ) ) ) )
71 56 adantr
 |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> R e. CC )
72 71 61 63 mulassd
 |-  ( ( ( ph /\ z e. CC ) /\ m e. NN0 ) -> ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) = ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) )
73 57 72 sylan2
 |-  ( ( ( ph /\ z e. CC ) /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) = ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) )
74 73 sumeq2dv
 |-  ( ( ph /\ z e. CC ) -> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( R x. ( ( B ` m ) x. ( z ^ m ) ) ) )
75 66 70 74 3eqtr4d
 |-  ( ( ph /\ z e. CC ) -> ( R x. ( F ` z ) ) = sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) )
76 75 mpteq2dva
 |-  ( ph -> ( z e. CC |-> ( R x. ( F ` z ) ) ) = ( z e. CC |-> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) ) )
77 18 76 eqtrd
 |-  ( ph -> ( ( CC X. { R } ) oF x. F ) = ( z e. CC |-> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) ) )
78 zsscn
 |-  ZZ C_ CC
79 78 a1i
 |-  ( ph -> ZZ C_ CC )
80 55 adantr
 |-  ( ( ph /\ m e. NN0 ) -> R e. CC )
81 47 nncnd
 |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) e. CC )
82 47 nnne0d
 |-  ( ( ph /\ m e. NN0 ) -> ( N ` m ) =/= 0 )
83 80 81 82 divcan2d
 |-  ( ( ph /\ m e. NN0 ) -> ( ( N ` m ) x. ( R / ( N ` m ) ) ) = R )
84 83 oveq2d
 |-  ( ( ph /\ m e. NN0 ) -> ( ( B ` m ) x. ( ( N ` m ) x. ( R / ( N ` m ) ) ) ) = ( ( B ` m ) x. R ) )
85 59 ffvelrnda
 |-  ( ( ph /\ m e. NN0 ) -> ( B ` m ) e. CC )
86 80 81 82 divcld
 |-  ( ( ph /\ m e. NN0 ) -> ( R / ( N ` m ) ) e. CC )
87 85 81 86 mulassd
 |-  ( ( ph /\ m e. NN0 ) -> ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) = ( ( B ` m ) x. ( ( N ` m ) x. ( R / ( N ` m ) ) ) ) )
88 80 85 mulcomd
 |-  ( ( ph /\ m e. NN0 ) -> ( R x. ( B ` m ) ) = ( ( B ` m ) x. R ) )
89 84 87 88 3eqtr4rd
 |-  ( ( ph /\ m e. NN0 ) -> ( R x. ( B ` m ) ) = ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) )
90 57 89 sylan2
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R x. ( B ` m ) ) = ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) )
91 oveq2
 |-  ( n = ( N ` m ) -> ( ( B ` m ) x. n ) = ( ( B ` m ) x. ( N ` m ) ) )
92 91 eleq1d
 |-  ( n = ( N ` m ) -> ( ( ( B ` m ) x. n ) e. ZZ <-> ( ( B ` m ) x. ( N ` m ) ) e. ZZ ) )
93 92 elrab
 |-  ( ( N ` m ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } <-> ( ( N ` m ) e. NN /\ ( ( B ` m ) x. ( N ` m ) ) e. ZZ ) )
94 93 simprbi
 |-  ( ( N ` m ) e. { n e. NN | ( ( B ` m ) x. n ) e. ZZ } -> ( ( B ` m ) x. ( N ` m ) ) e. ZZ )
95 46 94 syl
 |-  ( ( ph /\ m e. NN0 ) -> ( ( B ` m ) x. ( N ` m ) ) e. ZZ )
96 57 95 sylan2
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( B ` m ) x. ( N ` m ) ) e. ZZ )
97 eqid
 |-  ( x e. _V , y e. _V |-> ( ( x x. y ) mod ( N ` m ) ) ) = ( x e. _V , y e. _V |-> ( ( x x. y ) mod ( N ` m ) ) )
98 1 2 3 4 5 6 97 elqaalem2
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R mod ( N ` m ) ) = 0 )
99 54 adantr
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> R e. NN )
100 57 47 sylan2
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( N ` m ) e. NN )
101 nnre
 |-  ( R e. NN -> R e. RR )
102 nnrp
 |-  ( ( N ` m ) e. NN -> ( N ` m ) e. RR+ )
103 mod0
 |-  ( ( R e. RR /\ ( N ` m ) e. RR+ ) -> ( ( R mod ( N ` m ) ) = 0 <-> ( R / ( N ` m ) ) e. ZZ ) )
104 101 102 103 syl2an
 |-  ( ( R e. NN /\ ( N ` m ) e. NN ) -> ( ( R mod ( N ` m ) ) = 0 <-> ( R / ( N ` m ) ) e. ZZ ) )
105 99 100 104 syl2anc
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( R mod ( N ` m ) ) = 0 <-> ( R / ( N ` m ) ) e. ZZ ) )
106 98 105 mpbid
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R / ( N ` m ) ) e. ZZ )
107 96 106 zmulcld
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( B ` m ) x. ( N ` m ) ) x. ( R / ( N ` m ) ) ) e. ZZ )
108 90 107 eqeltrd
 |-  ( ( ph /\ m e. ( 0 ... ( deg ` F ) ) ) -> ( R x. ( B ` m ) ) e. ZZ )
109 79 52 108 elplyd
 |-  ( ph -> ( z e. CC |-> sum_ m e. ( 0 ... ( deg ` F ) ) ( ( R x. ( B ` m ) ) x. ( z ^ m ) ) ) e. ( Poly ` ZZ ) )
110 77 109 eqeltrd
 |-  ( ph -> ( ( CC X. { R } ) oF x. F ) e. ( Poly ` ZZ ) )
111 eldifsn
 |-  ( F e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( F e. ( Poly ` QQ ) /\ F =/= 0p ) )
112 2 111 sylib
 |-  ( ph -> ( F e. ( Poly ` QQ ) /\ F =/= 0p ) )
113 112 simprd
 |-  ( ph -> F =/= 0p )
114 oveq1
 |-  ( ( ( CC X. { R } ) oF x. F ) = 0p -> ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = ( 0p oF / ( CC X. { R } ) ) )
115 16 ffvelrnda
 |-  ( ( ph /\ z e. CC ) -> ( F ` z ) e. CC )
116 54 nnne0d
 |-  ( ph -> R =/= 0 )
117 116 adantr
 |-  ( ( ph /\ z e. CC ) -> R =/= 0 )
118 115 56 117 divcan3d
 |-  ( ( ph /\ z e. CC ) -> ( ( R x. ( F ` z ) ) / R ) = ( F ` z ) )
119 118 mpteq2dva
 |-  ( ph -> ( z e. CC |-> ( ( R x. ( F ` z ) ) / R ) ) = ( z e. CC |-> ( F ` z ) ) )
120 ovexd
 |-  ( ( ph /\ z e. CC ) -> ( R x. ( F ` z ) ) e. _V )
121 8 120 10 18 13 offval2
 |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = ( z e. CC |-> ( ( R x. ( F ` z ) ) / R ) ) )
122 119 121 17 3eqtr4d
 |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = F )
123 55 116 div0d
 |-  ( ph -> ( 0 / R ) = 0 )
124 123 mpteq2dv
 |-  ( ph -> ( z e. CC |-> ( 0 / R ) ) = ( z e. CC |-> 0 ) )
125 0cnd
 |-  ( ( ph /\ z e. CC ) -> 0 e. CC )
126 df-0p
 |-  0p = ( CC X. { 0 } )
127 fconstmpt
 |-  ( CC X. { 0 } ) = ( z e. CC |-> 0 )
128 126 127 eqtri
 |-  0p = ( z e. CC |-> 0 )
129 128 a1i
 |-  ( ph -> 0p = ( z e. CC |-> 0 ) )
130 8 125 10 129 13 offval2
 |-  ( ph -> ( 0p oF / ( CC X. { R } ) ) = ( z e. CC |-> ( 0 / R ) ) )
131 124 130 129 3eqtr4d
 |-  ( ph -> ( 0p oF / ( CC X. { R } ) ) = 0p )
132 122 131 eqeq12d
 |-  ( ph -> ( ( ( ( CC X. { R } ) oF x. F ) oF / ( CC X. { R } ) ) = ( 0p oF / ( CC X. { R } ) ) <-> F = 0p ) )
133 114 132 syl5ib
 |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) = 0p -> F = 0p ) )
134 133 necon3d
 |-  ( ph -> ( F =/= 0p -> ( ( CC X. { R } ) oF x. F ) =/= 0p ) )
135 113 134 mpd
 |-  ( ph -> ( ( CC X. { R } ) oF x. F ) =/= 0p )
136 eldifsn
 |-  ( ( ( CC X. { R } ) oF x. F ) e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( ( ( CC X. { R } ) oF x. F ) e. ( Poly ` ZZ ) /\ ( ( CC X. { R } ) oF x. F ) =/= 0p ) )
137 110 135 136 sylanbrc
 |-  ( ph -> ( ( CC X. { R } ) oF x. F ) e. ( ( Poly ` ZZ ) \ { 0p } ) )
138 9 fconst
 |-  ( CC X. { R } ) : CC --> { R }
139 ffn
 |-  ( ( CC X. { R } ) : CC --> { R } -> ( CC X. { R } ) Fn CC )
140 138 139 mp1i
 |-  ( ph -> ( CC X. { R } ) Fn CC )
141 16 ffnd
 |-  ( ph -> F Fn CC )
142 inidm
 |-  ( CC i^i CC ) = CC
143 9 fvconst2
 |-  ( A e. CC -> ( ( CC X. { R } ) ` A ) = R )
144 143 adantl
 |-  ( ( ph /\ A e. CC ) -> ( ( CC X. { R } ) ` A ) = R )
145 3 adantr
 |-  ( ( ph /\ A e. CC ) -> ( F ` A ) = 0 )
146 140 141 8 8 142 144 145 ofval
 |-  ( ( ph /\ A e. CC ) -> ( ( ( CC X. { R } ) oF x. F ) ` A ) = ( R x. 0 ) )
147 1 146 mpdan
 |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) ` A ) = ( R x. 0 ) )
148 55 mul01d
 |-  ( ph -> ( R x. 0 ) = 0 )
149 147 148 eqtrd
 |-  ( ph -> ( ( ( CC X. { R } ) oF x. F ) ` A ) = 0 )
150 fveq1
 |-  ( f = ( ( CC X. { R } ) oF x. F ) -> ( f ` A ) = ( ( ( CC X. { R } ) oF x. F ) ` A ) )
151 150 eqeq1d
 |-  ( f = ( ( CC X. { R } ) oF x. F ) -> ( ( f ` A ) = 0 <-> ( ( ( CC X. { R } ) oF x. F ) ` A ) = 0 ) )
152 151 rspcev
 |-  ( ( ( ( CC X. { R } ) oF x. F ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( ( CC X. { R } ) oF x. F ) ` A ) = 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 )
153 137 149 152 syl2anc
 |-  ( ph -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 )
154 elaa
 |-  ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) )
155 1 153 154 sylanbrc
 |-  ( ph -> A e. AA )