Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elqs.1 | |- B e. _V |
|
| Assertion | elqs | |- ( B e. ( A /. R ) <-> E. x e. A B = [ x ] R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqs.1 | |- B e. _V |
|
| 2 | elqsg | |- ( B e. _V -> ( B e. ( A /. R ) <-> E. x e. A B = [ x ] R ) ) |
|
| 3 | 1 2 | ax-mp | |- ( B e. ( A /. R ) <-> E. x e. A B = [ x ] R ) |