Metamath Proof Explorer


Theorem elqs

Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypothesis elqs.1
|- B e. _V
Assertion elqs
|- ( B e. ( A /. R ) <-> E. x e. A B = [ x ] R )

Proof

Step Hyp Ref Expression
1 elqs.1
 |-  B e. _V
2 elqsg
 |-  ( B e. _V -> ( B e. ( A /. R ) <-> E. x e. A B = [ x ] R ) )
3 1 2 ax-mp
 |-  ( B e. ( A /. R ) <-> E. x e. A B = [ x ] R )