Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elqsn0 | |- ( ( dom R = A /\ B e. ( A /. R ) ) -> B =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( A /. R ) = ( A /. R ) |
|
| 2 | neeq1 | |- ( [ x ] R = B -> ( [ x ] R =/= (/) <-> B =/= (/) ) ) |
|
| 3 | eleq2 | |- ( dom R = A -> ( x e. dom R <-> x e. A ) ) |
|
| 4 | 3 | biimpar | |- ( ( dom R = A /\ x e. A ) -> x e. dom R ) |
| 5 | ecdmn0 | |- ( x e. dom R <-> [ x ] R =/= (/) ) |
|
| 6 | 4 5 | sylib | |- ( ( dom R = A /\ x e. A ) -> [ x ] R =/= (/) ) |
| 7 | 1 2 6 | ectocld | |- ( ( dom R = A /\ B e. ( A /. R ) ) -> B =/= (/) ) |