Metamath Proof Explorer


Theorem elqtop2

Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis qtoptop.1
|- X = U. J
Assertion elqtop2
|- ( ( J e. V /\ F : X -onto-> Y ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) )

Proof

Step Hyp Ref Expression
1 qtoptop.1
 |-  X = U. J
2 ssid
 |-  X C_ X
3 1 elqtop
 |-  ( ( J e. V /\ F : X -onto-> Y /\ X C_ X ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) )
4 2 3 mp3an3
 |-  ( ( J e. V /\ F : X -onto-> Y ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) )