| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elrab2w.1 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 2 |  | elrab2w.2 |  |-  ( y = A -> ( ps <-> ch ) ) | 
						
							| 3 |  | elrab2w.3 |  |-  C = { x e. B | ph } | 
						
							| 4 |  | elex |  |-  ( A e. C -> A e. _V ) | 
						
							| 5 |  | elex |  |-  ( A e. B -> A e. _V ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. B /\ ch ) -> A e. _V ) | 
						
							| 7 |  | eleq1w |  |-  ( x = y -> ( x e. B <-> y e. B ) ) | 
						
							| 8 | 7 1 | anbi12d |  |-  ( x = y -> ( ( x e. B /\ ph ) <-> ( y e. B /\ ps ) ) ) | 
						
							| 9 |  | eleq1 |  |-  ( y = A -> ( y e. B <-> A e. B ) ) | 
						
							| 10 | 9 2 | anbi12d |  |-  ( y = A -> ( ( y e. B /\ ps ) <-> ( A e. B /\ ch ) ) ) | 
						
							| 11 |  | df-rab |  |-  { x e. B | ph } = { x | ( x e. B /\ ph ) } | 
						
							| 12 | 3 11 | eqtri |  |-  C = { x | ( x e. B /\ ph ) } | 
						
							| 13 | 8 10 12 | elab2gw |  |-  ( A e. _V -> ( A e. C <-> ( A e. B /\ ch ) ) ) | 
						
							| 14 | 4 6 13 | pm5.21nii |  |-  ( A e. C <-> ( A e. B /\ ch ) ) |