Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elrab.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | elrab3 | |- ( A e. B -> ( A e. { x e. B | ph } <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | 1 | elrab | |- ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) ) |
| 3 | 2 | baib | |- ( A e. B -> ( A e. { x e. B | ph } <-> ps ) ) |