Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
|- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
2 |
1
|
eleq2i |
|- ( A e. { x e. B | ph } <-> A e. { x | ( x e. B /\ ph ) } ) |
3 |
|
id |
|- ( A e. B -> A e. B ) |
4 |
|
nfa1 |
|- F/ x A. x ( x = A -> ( ph <-> ps ) ) |
5 |
|
nfv |
|- F/ x A e. B |
6 |
4 5
|
nfan |
|- F/ x ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) |
7 |
|
sp |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph <-> ps ) ) ) |
8 |
|
eleq1 |
|- ( x = A -> ( x e. B <-> A e. B ) ) |
9 |
8
|
biimparc |
|- ( ( A e. B /\ x = A ) -> x e. B ) |
10 |
9
|
biantrurd |
|- ( ( A e. B /\ x = A ) -> ( ph <-> ( x e. B /\ ph ) ) ) |
11 |
10
|
bibi1d |
|- ( ( A e. B /\ x = A ) -> ( ( ph <-> ps ) <-> ( ( x e. B /\ ph ) <-> ps ) ) ) |
12 |
11
|
pm5.74da |
|- ( A e. B -> ( ( x = A -> ( ph <-> ps ) ) <-> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) ) |
13 |
7 12
|
syl5ibcom |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) ) |
14 |
13
|
imp |
|- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) |
15 |
6 14
|
alrimi |
|- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> A. x ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) |
16 |
|
elabgt |
|- ( ( A e. B /\ A. x ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) -> ( A e. { x | ( x e. B /\ ph ) } <-> ps ) ) |
17 |
3 15 16
|
syl2an2 |
|- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A e. { x | ( x e. B /\ ph ) } <-> ps ) ) |
18 |
2 17
|
syl5bb |
|- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A e. { x e. B | ph } <-> ps ) ) |