| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab |  |-  { x e. B | ph } = { x | ( x e. B /\ ph ) } | 
						
							| 2 | 1 | eleq2i |  |-  ( A e. { x e. B | ph } <-> A e. { x | ( x e. B /\ ph ) } ) | 
						
							| 3 |  | id |  |-  ( A e. B -> A e. B ) | 
						
							| 4 |  | nfa1 |  |-  F/ x A. x ( x = A -> ( ph <-> ps ) ) | 
						
							| 5 |  | nfv |  |-  F/ x A e. B | 
						
							| 6 | 4 5 | nfan |  |-  F/ x ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) | 
						
							| 7 |  | sp |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph <-> ps ) ) ) | 
						
							| 8 |  | eleq1 |  |-  ( x = A -> ( x e. B <-> A e. B ) ) | 
						
							| 9 | 8 | biimparc |  |-  ( ( A e. B /\ x = A ) -> x e. B ) | 
						
							| 10 | 9 | biantrurd |  |-  ( ( A e. B /\ x = A ) -> ( ph <-> ( x e. B /\ ph ) ) ) | 
						
							| 11 | 10 | bibi1d |  |-  ( ( A e. B /\ x = A ) -> ( ( ph <-> ps ) <-> ( ( x e. B /\ ph ) <-> ps ) ) ) | 
						
							| 12 | 11 | pm5.74da |  |-  ( A e. B -> ( ( x = A -> ( ph <-> ps ) ) <-> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) ) | 
						
							| 13 | 7 12 | syl5ibcom |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) | 
						
							| 15 | 6 14 | alrimi |  |-  ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> A. x ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) | 
						
							| 16 |  | elabgt |  |-  ( ( A e. B /\ A. x ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) -> ( A e. { x | ( x e. B /\ ph ) } <-> ps ) ) | 
						
							| 17 | 3 15 16 | syl2an2 |  |-  ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A e. { x | ( x e. B /\ ph ) } <-> ps ) ) | 
						
							| 18 | 2 17 | bitrid |  |-  ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A e. { x e. B | ph } <-> ps ) ) |