Metamath Proof Explorer


Theorem elrabd

Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elrabd.1
|- ( x = A -> ( ps <-> ch ) )
elrabd.2
|- ( ph -> A e. B )
elrabd.3
|- ( ph -> ch )
Assertion elrabd
|- ( ph -> A e. { x e. B | ps } )

Proof

Step Hyp Ref Expression
1 elrabd.1
 |-  ( x = A -> ( ps <-> ch ) )
2 elrabd.2
 |-  ( ph -> A e. B )
3 elrabd.3
 |-  ( ph -> ch )
4 1 elrab
 |-  ( A e. { x e. B | ps } <-> ( A e. B /\ ch ) )
5 2 3 4 sylanbrc
 |-  ( ph -> A e. { x e. B | ps } )