Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elrabd.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
elrabd.2 | |- ( ph -> A e. B ) |
||
elrabd.3 | |- ( ph -> ch ) |
||
Assertion | elrabd | |- ( ph -> A e. { x e. B | ps } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabd.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
2 | elrabd.2 | |- ( ph -> A e. B ) |
|
3 | elrabd.3 | |- ( ph -> ch ) |
|
4 | 1 | elrab | |- ( A e. { x e. B | ps } <-> ( A e. B /\ ch ) ) |
5 | 2 3 4 | sylanbrc | |- ( ph -> A e. { x e. B | ps } ) |