| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfrefrels2 | 
							 |-  RefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } | 
						
						
							| 2 | 
							
								
							 | 
							dmeq | 
							 |-  ( r = R -> dom r = dom R )  | 
						
						
							| 3 | 
							
								
							 | 
							rneq | 
							 |-  ( r = R -> ran r = ran R )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							xpeq12d | 
							 |-  ( r = R -> ( dom r X. ran r ) = ( dom R X. ran R ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ineq2d | 
							 |-  ( r = R -> ( _I i^i ( dom r X. ran r ) ) = ( _I i^i ( dom R X. ran R ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							id | 
							 |-  ( r = R -> r = R )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sseq12d | 
							 |-  ( r = R -> ( ( _I i^i ( dom r X. ran r ) ) C_ r <-> ( _I i^i ( dom R X. ran R ) ) C_ R ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							rabeqel | 
							 |-  ( R e. RefRels <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ R e. Rels ) )  |