Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 18-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elrege0 | |- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |- 0 e. RR |
|
2 | elicopnf | |- ( 0 e. RR -> ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) ) |
|
3 | 1 2 | ax-mp | |- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |