Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrel | |- ( ( Rel R /\ A e. R ) -> E. x E. y A = <. x , y >. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rel | |- ( Rel R <-> R C_ ( _V X. _V ) ) | |
| 2 | 1 | biimpi | |- ( Rel R -> R C_ ( _V X. _V ) ) | 
| 3 | 2 | sselda | |- ( ( Rel R /\ A e. R ) -> A e. ( _V X. _V ) ) | 
| 4 | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) | |
| 5 | 3 4 | sylib | |- ( ( Rel R /\ A e. R ) -> E. x E. y A = <. x , y >. ) |