Metamath Proof Explorer


Theorem elrel

Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006)

Ref Expression
Assertion elrel
|- ( ( Rel R /\ A e. R ) -> E. x E. y A = <. x , y >. )

Proof

Step Hyp Ref Expression
1 df-rel
 |-  ( Rel R <-> R C_ ( _V X. _V ) )
2 1 biimpi
 |-  ( Rel R -> R C_ ( _V X. _V ) )
3 2 sselda
 |-  ( ( Rel R /\ A e. R ) -> A e. ( _V X. _V ) )
4 elvv
 |-  ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. )
5 3 4 sylib
 |-  ( ( Rel R /\ A e. R ) -> E. x E. y A = <. x , y >. )