| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rel |  |-  ( Rel A <-> A C_ ( _V X. _V ) ) | 
						
							| 2 |  | ssel |  |-  ( A C_ ( _V X. _V ) -> ( B e. A -> B e. ( _V X. _V ) ) ) | 
						
							| 3 | 1 2 | sylbi |  |-  ( Rel A -> ( B e. A -> B e. ( _V X. _V ) ) ) | 
						
							| 4 |  | elvv |  |-  ( B e. ( _V X. _V ) <-> E. x E. y B = <. x , y >. ) | 
						
							| 5 | 3 4 | imbitrdi |  |-  ( Rel A -> ( B e. A -> E. x E. y B = <. x , y >. ) ) | 
						
							| 6 |  | eleq1 |  |-  ( B = <. x , y >. -> ( B e. A <-> <. x , y >. e. A ) ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 |  | vex |  |-  y e. _V | 
						
							| 9 | 7 8 | opeldm |  |-  ( <. x , y >. e. A -> x e. dom A ) | 
						
							| 10 | 6 9 | biimtrdi |  |-  ( B = <. x , y >. -> ( B e. A -> x e. dom A ) ) | 
						
							| 11 |  | inteq |  |-  ( B = <. x , y >. -> |^| B = |^| <. x , y >. ) | 
						
							| 12 | 11 | inteqd |  |-  ( B = <. x , y >. -> |^| |^| B = |^| |^| <. x , y >. ) | 
						
							| 13 | 7 8 | op1stb |  |-  |^| |^| <. x , y >. = x | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( B = <. x , y >. -> |^| |^| B = x ) | 
						
							| 15 | 14 | eleq1d |  |-  ( B = <. x , y >. -> ( |^| |^| B e. dom A <-> x e. dom A ) ) | 
						
							| 16 | 10 15 | sylibrd |  |-  ( B = <. x , y >. -> ( B e. A -> |^| |^| B e. dom A ) ) | 
						
							| 17 | 16 | exlimivv |  |-  ( E. x E. y B = <. x , y >. -> ( B e. A -> |^| |^| B e. dom A ) ) | 
						
							| 18 | 5 17 | syli |  |-  ( Rel A -> ( B e. A -> |^| |^| B e. dom A ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( Rel A /\ B e. A ) -> |^| |^| B e. dom A ) |