Step |
Hyp |
Ref |
Expression |
1 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
2 |
|
ssel |
|- ( A C_ ( _V X. _V ) -> ( B e. A -> B e. ( _V X. _V ) ) ) |
3 |
1 2
|
sylbi |
|- ( Rel A -> ( B e. A -> B e. ( _V X. _V ) ) ) |
4 |
|
elvv |
|- ( B e. ( _V X. _V ) <-> E. x E. y B = <. x , y >. ) |
5 |
3 4
|
syl6ib |
|- ( Rel A -> ( B e. A -> E. x E. y B = <. x , y >. ) ) |
6 |
|
eleq1 |
|- ( B = <. x , y >. -> ( B e. A <-> <. x , y >. e. A ) ) |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
opeldm |
|- ( <. x , y >. e. A -> x e. dom A ) |
10 |
6 9
|
syl6bi |
|- ( B = <. x , y >. -> ( B e. A -> x e. dom A ) ) |
11 |
|
inteq |
|- ( B = <. x , y >. -> |^| B = |^| <. x , y >. ) |
12 |
11
|
inteqd |
|- ( B = <. x , y >. -> |^| |^| B = |^| |^| <. x , y >. ) |
13 |
7 8
|
op1stb |
|- |^| |^| <. x , y >. = x |
14 |
12 13
|
eqtrdi |
|- ( B = <. x , y >. -> |^| |^| B = x ) |
15 |
14
|
eleq1d |
|- ( B = <. x , y >. -> ( |^| |^| B e. dom A <-> x e. dom A ) ) |
16 |
10 15
|
sylibrd |
|- ( B = <. x , y >. -> ( B e. A -> |^| |^| B e. dom A ) ) |
17 |
16
|
exlimivv |
|- ( E. x E. y B = <. x , y >. -> ( B e. A -> |^| |^| B e. dom A ) ) |
18 |
5 17
|
syli |
|- ( Rel A -> ( B e. A -> |^| |^| B e. dom A ) ) |
19 |
18
|
imp |
|- ( ( Rel A /\ B e. A ) -> |^| |^| B e. dom A ) |