Metamath Proof Explorer


Theorem elrelimasn

Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion elrelimasn
|- ( Rel R -> ( B e. ( R " { A } ) <-> A R B ) )

Proof

Step Hyp Ref Expression
1 relimasn
 |-  ( Rel R -> ( R " { A } ) = { x | A R x } )
2 1 eleq2d
 |-  ( Rel R -> ( B e. ( R " { A } ) <-> B e. { x | A R x } ) )
3 brrelex2
 |-  ( ( Rel R /\ A R B ) -> B e. _V )
4 3 ex
 |-  ( Rel R -> ( A R B -> B e. _V ) )
5 breq2
 |-  ( x = B -> ( A R x <-> A R B ) )
6 5 elab3g
 |-  ( ( A R B -> B e. _V ) -> ( B e. { x | A R x } <-> A R B ) )
7 4 6 syl
 |-  ( Rel R -> ( B e. { x | A R x } <-> A R B ) )
8 2 7 bitrd
 |-  ( Rel R -> ( B e. ( R " { A } ) <-> A R B ) )