Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrelimasn | |- ( Rel R -> ( B e. ( R " { A } ) <-> A R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relimasn | |- ( Rel R -> ( R " { A } ) = { x | A R x } ) |
|
| 2 | 1 | eleq2d | |- ( Rel R -> ( B e. ( R " { A } ) <-> B e. { x | A R x } ) ) |
| 3 | brrelex2 | |- ( ( Rel R /\ A R B ) -> B e. _V ) |
|
| 4 | 3 | ex | |- ( Rel R -> ( A R B -> B e. _V ) ) |
| 5 | breq2 | |- ( x = B -> ( A R x <-> A R B ) ) |
|
| 6 | 5 | elab3g | |- ( ( A R B -> B e. _V ) -> ( B e. { x | A R x } <-> A R B ) ) |
| 7 | 4 6 | syl | |- ( Rel R -> ( B e. { x | A R x } <-> A R B ) ) |
| 8 | 2 7 | bitrd | |- ( Rel R -> ( B e. ( R " { A } ) <-> A R B ) ) |