Description: Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrels6 | |- ( R e. V -> ( R e. Rels <-> ( R i^i ( dom R X. ran R ) ) = R ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrelsrel | |- ( R e. V -> ( R e. Rels <-> Rel R ) )  | 
						|
| 2 | dfrel6 | |- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R )  | 
						|
| 3 | 1 2 | bitrdi | |- ( R e. V -> ( R e. Rels <-> ( R i^i ( dom R X. ran R ) ) = R ) )  |