Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrelscnveq | |- ( R e. Rels -> ( `' R C_ R <-> `' R = R ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrelscnveq3 | |- ( R e. Rels -> ( R = `' R <-> A. x A. y ( x R y -> y R x ) ) )  | 
						|
| 2 | cnvsym | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) )  | 
						|
| 3 | 1 2 | bitr4di | |- ( R e. Rels -> ( R = `' R <-> `' R C_ R ) )  | 
						
| 4 | eqcom | |- ( R = `' R <-> `' R = R )  | 
						|
| 5 | 3 4 | bitr3di | |- ( R e. Rels -> ( `' R C_ R <-> `' R = R ) )  |