| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqss | 
							 |-  ( R = `' R <-> ( R C_ `' R /\ `' R C_ R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cnvsym | 
							 |-  ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimpi | 
							 |-  ( `' R C_ R -> A. x A. y ( x R y -> y R x ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1d | 
							 |-  ( `' R C_ R -> ( R e. Rels -> A. x A. y ( x R y -> y R x ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( R C_ `' R /\ `' R C_ R ) -> ( R e. Rels -> A. x A. y ( x R y -> y R x ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							com12 | 
							 |-  ( R e. Rels -> ( ( R C_ `' R /\ `' R C_ R ) -> A. x A. y ( x R y -> y R x ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elrelsrelim | 
							 |-  ( R e. Rels -> Rel R )  | 
						
						
							| 8 | 
							
								
							 | 
							dfrel2 | 
							 |-  ( Rel R <-> `' `' R = R )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylib | 
							 |-  ( R e. Rels -> `' `' R = R )  | 
						
						
							| 10 | 
							
								
							 | 
							cnvss | 
							 |-  ( `' R C_ R -> `' `' R C_ `' R )  | 
						
						
							| 11 | 
							
								
							 | 
							sseq1 | 
							 |-  ( `' `' R = R -> ( `' `' R C_ `' R <-> R C_ `' R ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl5ibcom | 
							 |-  ( `' R C_ R -> ( `' `' R = R -> R C_ `' R ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							sylbir | 
							 |-  ( A. x A. y ( x R y -> y R x ) -> ( `' `' R = R -> R C_ `' R ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							syl5com | 
							 |-  ( R e. Rels -> ( A. x A. y ( x R y -> y R x ) -> R C_ `' R ) )  | 
						
						
							| 15 | 
							
								2
							 | 
							biimpri | 
							 |-  ( A. x A. y ( x R y -> y R x ) -> `' R C_ R )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							jca2 | 
							 |-  ( R e. Rels -> ( A. x A. y ( x R y -> y R x ) -> ( R C_ `' R /\ `' R C_ R ) ) )  | 
						
						
							| 17 | 
							
								6 16
							 | 
							impbid | 
							 |-  ( R e. Rels -> ( ( R C_ `' R /\ `' R C_ R ) <-> A. x A. y ( x R y -> y R x ) ) )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							bitrid | 
							 |-  ( R e. Rels -> ( R = `' R <-> A. x A. y ( x R y -> y R x ) ) )  |