| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( A i^i S ) = ( A i^i S ) |
| 2 |
|
ineq1 |
|- ( x = A -> ( x i^i S ) = ( A i^i S ) ) |
| 3 |
2
|
rspceeqv |
|- ( ( A e. J /\ ( A i^i S ) = ( A i^i S ) ) -> E. x e. J ( A i^i S ) = ( x i^i S ) ) |
| 4 |
1 3
|
mpan2 |
|- ( A e. J -> E. x e. J ( A i^i S ) = ( x i^i S ) ) |
| 5 |
|
elrest |
|- ( ( J e. V /\ S e. W ) -> ( ( A i^i S ) e. ( J |`t S ) <-> E. x e. J ( A i^i S ) = ( x i^i S ) ) ) |
| 6 |
4 5
|
imbitrrid |
|- ( ( J e. V /\ S e. W ) -> ( A e. J -> ( A i^i S ) e. ( J |`t S ) ) ) |
| 7 |
6
|
3impia |
|- ( ( J e. V /\ S e. W /\ A e. J ) -> ( A i^i S ) e. ( J |`t S ) ) |