Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
|- ( F : I --> ~P B -> ran F C_ ~P B ) |
2 |
|
elrfi |
|- ( ( B e. V /\ ran F C_ ~P B ) -> ( A e. ( fi ` ( { B } u. ran F ) ) <-> E. w e. ( ~P ran F i^i Fin ) A = ( B i^i |^| w ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( B e. V /\ F : I --> ~P B ) -> ( A e. ( fi ` ( { B } u. ran F ) ) <-> E. w e. ( ~P ran F i^i Fin ) A = ( B i^i |^| w ) ) ) |
4 |
|
imassrn |
|- ( F " v ) C_ ran F |
5 |
|
pwexg |
|- ( B e. V -> ~P B e. _V ) |
6 |
|
ssexg |
|- ( ( ran F C_ ~P B /\ ~P B e. _V ) -> ran F e. _V ) |
7 |
1 5 6
|
syl2anr |
|- ( ( B e. V /\ F : I --> ~P B ) -> ran F e. _V ) |
8 |
|
elpw2g |
|- ( ran F e. _V -> ( ( F " v ) e. ~P ran F <-> ( F " v ) C_ ran F ) ) |
9 |
7 8
|
syl |
|- ( ( B e. V /\ F : I --> ~P B ) -> ( ( F " v ) e. ~P ran F <-> ( F " v ) C_ ran F ) ) |
10 |
4 9
|
mpbiri |
|- ( ( B e. V /\ F : I --> ~P B ) -> ( F " v ) e. ~P ran F ) |
11 |
10
|
adantr |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( F " v ) e. ~P ran F ) |
12 |
|
ffun |
|- ( F : I --> ~P B -> Fun F ) |
13 |
12
|
ad2antlr |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> Fun F ) |
14 |
|
inss2 |
|- ( ~P I i^i Fin ) C_ Fin |
15 |
14
|
sseli |
|- ( v e. ( ~P I i^i Fin ) -> v e. Fin ) |
16 |
15
|
adantl |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> v e. Fin ) |
17 |
|
imafi |
|- ( ( Fun F /\ v e. Fin ) -> ( F " v ) e. Fin ) |
18 |
13 16 17
|
syl2anc |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( F " v ) e. Fin ) |
19 |
11 18
|
elind |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( F " v ) e. ( ~P ran F i^i Fin ) ) |
20 |
|
ffn |
|- ( F : I --> ~P B -> F Fn I ) |
21 |
20
|
ad2antlr |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> F Fn I ) |
22 |
|
inss1 |
|- ( ~P ran F i^i Fin ) C_ ~P ran F |
23 |
22
|
sseli |
|- ( w e. ( ~P ran F i^i Fin ) -> w e. ~P ran F ) |
24 |
23
|
elpwid |
|- ( w e. ( ~P ran F i^i Fin ) -> w C_ ran F ) |
25 |
24
|
adantl |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> w C_ ran F ) |
26 |
|
inss2 |
|- ( ~P ran F i^i Fin ) C_ Fin |
27 |
26
|
sseli |
|- ( w e. ( ~P ran F i^i Fin ) -> w e. Fin ) |
28 |
27
|
adantl |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> w e. Fin ) |
29 |
|
fipreima |
|- ( ( F Fn I /\ w C_ ran F /\ w e. Fin ) -> E. v e. ( ~P I i^i Fin ) ( F " v ) = w ) |
30 |
21 25 28 29
|
syl3anc |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> E. v e. ( ~P I i^i Fin ) ( F " v ) = w ) |
31 |
|
eqcom |
|- ( ( F " v ) = w <-> w = ( F " v ) ) |
32 |
31
|
rexbii |
|- ( E. v e. ( ~P I i^i Fin ) ( F " v ) = w <-> E. v e. ( ~P I i^i Fin ) w = ( F " v ) ) |
33 |
30 32
|
sylib |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> E. v e. ( ~P I i^i Fin ) w = ( F " v ) ) |
34 |
|
inteq |
|- ( w = ( F " v ) -> |^| w = |^| ( F " v ) ) |
35 |
34
|
ineq2d |
|- ( w = ( F " v ) -> ( B i^i |^| w ) = ( B i^i |^| ( F " v ) ) ) |
36 |
35
|
eqeq2d |
|- ( w = ( F " v ) -> ( A = ( B i^i |^| w ) <-> A = ( B i^i |^| ( F " v ) ) ) ) |
37 |
36
|
adantl |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ w = ( F " v ) ) -> ( A = ( B i^i |^| w ) <-> A = ( B i^i |^| ( F " v ) ) ) ) |
38 |
19 33 37
|
rexxfrd |
|- ( ( B e. V /\ F : I --> ~P B ) -> ( E. w e. ( ~P ran F i^i Fin ) A = ( B i^i |^| w ) <-> E. v e. ( ~P I i^i Fin ) A = ( B i^i |^| ( F " v ) ) ) ) |
39 |
20
|
ad2antlr |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> F Fn I ) |
40 |
|
inss1 |
|- ( ~P I i^i Fin ) C_ ~P I |
41 |
40
|
sseli |
|- ( v e. ( ~P I i^i Fin ) -> v e. ~P I ) |
42 |
41
|
elpwid |
|- ( v e. ( ~P I i^i Fin ) -> v C_ I ) |
43 |
42
|
adantl |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> v C_ I ) |
44 |
|
imaiinfv |
|- ( ( F Fn I /\ v C_ I ) -> |^|_ y e. v ( F ` y ) = |^| ( F " v ) ) |
45 |
39 43 44
|
syl2anc |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> |^|_ y e. v ( F ` y ) = |^| ( F " v ) ) |
46 |
45
|
eqcomd |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> |^| ( F " v ) = |^|_ y e. v ( F ` y ) ) |
47 |
46
|
ineq2d |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( B i^i |^| ( F " v ) ) = ( B i^i |^|_ y e. v ( F ` y ) ) ) |
48 |
47
|
eqeq2d |
|- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( A = ( B i^i |^| ( F " v ) ) <-> A = ( B i^i |^|_ y e. v ( F ` y ) ) ) ) |
49 |
48
|
rexbidva |
|- ( ( B e. V /\ F : I --> ~P B ) -> ( E. v e. ( ~P I i^i Fin ) A = ( B i^i |^| ( F " v ) ) <-> E. v e. ( ~P I i^i Fin ) A = ( B i^i |^|_ y e. v ( F ` y ) ) ) ) |
50 |
3 38 49
|
3bitrd |
|- ( ( B e. V /\ F : I --> ~P B ) -> ( A e. ( fi ` ( { B } u. ran F ) ) <-> E. v e. ( ~P I i^i Fin ) A = ( B i^i |^|_ y e. v ( F ` y ) ) ) ) |