| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringcbas.c |  |-  C = ( RingCat ` U ) | 
						
							| 2 |  | ringcbas.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | ringcbas.u |  |-  ( ph -> U e. V ) | 
						
							| 4 |  | ringchomfval.h |  |-  H = ( Hom ` C ) | 
						
							| 5 |  | ringchom.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | ringchom.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 | 1 2 3 4 5 6 | ringchom |  |-  ( ph -> ( X H Y ) = ( X RingHom Y ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( ph -> ( F e. ( X H Y ) <-> F e. ( X RingHom Y ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` X ) = ( Base ` X ) | 
						
							| 10 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 11 | 9 10 | rhmf |  |-  ( F e. ( X RingHom Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) | 
						
							| 12 | 8 11 | biimtrdi |  |-  ( ph -> ( F e. ( X H Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) ) |