Metamath Proof Explorer


Theorem elrn

Description: Membership in a range. (Contributed by NM, 2-Apr-2004)

Ref Expression
Hypothesis elrn.1
|- A e. _V
Assertion elrn
|- ( A e. ran B <-> E. x x B A )

Proof

Step Hyp Ref Expression
1 elrn.1
 |-  A e. _V
2 elrng
 |-  ( A e. _V -> ( A e. ran B <-> E. x x B A ) )
3 1 2 ax-mp
 |-  ( A e. ran B <-> E. x x B A )