Metamath Proof Explorer


Theorem elrn2

Description: Membership in a range. (Contributed by NM, 10-Jul-1994)

Ref Expression
Hypothesis elrn.1
|- A e. _V
Assertion elrn2
|- ( A e. ran B <-> E. x <. x , A >. e. B )

Proof

Step Hyp Ref Expression
1 elrn.1
 |-  A e. _V
2 elrn2g
 |-  ( A e. _V -> ( A e. ran B <-> E. x <. x , A >. e. B ) )
3 1 2 ax-mp
 |-  ( A e. ran B <-> E. x <. x , A >. e. B )