Metamath Proof Explorer


Theorem elrn2g

Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion elrn2g
|- ( A e. V -> ( A e. ran B <-> E. x <. x , A >. e. B ) )

Proof

Step Hyp Ref Expression
1 opeq2
 |-  ( y = w -> <. x , y >. = <. x , w >. )
2 1 eleq1d
 |-  ( y = w -> ( <. x , y >. e. B <-> <. x , w >. e. B ) )
3 2 exbidv
 |-  ( y = w -> ( E. x <. x , y >. e. B <-> E. x <. x , w >. e. B ) )
4 opeq2
 |-  ( w = A -> <. x , w >. = <. x , A >. )
5 4 eleq1d
 |-  ( w = A -> ( <. x , w >. e. B <-> <. x , A >. e. B ) )
6 5 exbidv
 |-  ( w = A -> ( E. x <. x , w >. e. B <-> E. x <. x , A >. e. B ) )
7 dfrn3
 |-  ran B = { y | E. x <. x , y >. e. B }
8 3 6 7 elab2gw
 |-  ( A e. V -> ( A e. ran B <-> E. x <. x , A >. e. B ) )