Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | elrnmpog | |- ( D e. V -> ( D e. ran F <-> E. x e. A E. y e. B D = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | eqeq1 | |- ( z = D -> ( z = C <-> D = C ) ) |
|
| 3 | 2 | 2rexbidv | |- ( z = D -> ( E. x e. A E. y e. B z = C <-> E. x e. A E. y e. B D = C ) ) |
| 4 | 1 | rnmpo | |- ran F = { z | E. x e. A E. y e. B z = C } |
| 5 | 3 4 | elab2g | |- ( D e. V -> ( D e. ran F <-> E. x e. A E. y e. B D = C ) ) |