Metamath Proof Explorer


Theorem elrnmpog

Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis rngop.1
|- F = ( x e. A , y e. B |-> C )
Assertion elrnmpog
|- ( D e. V -> ( D e. ran F <-> E. x e. A E. y e. B D = C ) )

Proof

Step Hyp Ref Expression
1 rngop.1
 |-  F = ( x e. A , y e. B |-> C )
2 eqeq1
 |-  ( z = D -> ( z = C <-> D = C ) )
3 2 2rexbidv
 |-  ( z = D -> ( E. x e. A E. y e. B z = C <-> E. x e. A E. y e. B D = C ) )
4 1 rnmpo
 |-  ran F = { z | E. x e. A E. y e. B z = C }
5 3 4 elab2g
 |-  ( D e. V -> ( D e. ran F <-> E. x e. A E. y e. B D = C ) )