| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnmpt.1 |
|- F = ( x e. A |-> B ) |
| 2 |
|
vex |
|- x e. _V |
| 3 |
|
id |
|- ( x = z -> x = z ) |
| 4 |
|
csbeq1a |
|- ( x = z -> A = [_ z / x ]_ A ) |
| 5 |
3 4
|
eleq12d |
|- ( x = z -> ( x e. A <-> z e. [_ z / x ]_ A ) ) |
| 6 |
|
csbeq1a |
|- ( x = z -> B = [_ z / x ]_ B ) |
| 7 |
6
|
biantrud |
|- ( x = z -> ( z e. [_ z / x ]_ A <-> ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) ) ) |
| 8 |
5 7
|
bitr2d |
|- ( x = z -> ( ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) <-> x e. A ) ) |
| 9 |
8
|
equcoms |
|- ( z = x -> ( ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) <-> x e. A ) ) |
| 10 |
2 9
|
spcev |
|- ( x e. A -> E. z ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) ) |
| 11 |
|
df-rex |
|- ( E. x e. A y = B <-> E. x ( x e. A /\ y = B ) ) |
| 12 |
|
nfv |
|- F/ z ( x e. A /\ y = B ) |
| 13 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ A |
| 14 |
13
|
nfcri |
|- F/ x z e. [_ z / x ]_ A |
| 15 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ B |
| 16 |
15
|
nfeq2 |
|- F/ x y = [_ z / x ]_ B |
| 17 |
14 16
|
nfan |
|- F/ x ( z e. [_ z / x ]_ A /\ y = [_ z / x ]_ B ) |
| 18 |
6
|
eqeq2d |
|- ( x = z -> ( y = B <-> y = [_ z / x ]_ B ) ) |
| 19 |
5 18
|
anbi12d |
|- ( x = z -> ( ( x e. A /\ y = B ) <-> ( z e. [_ z / x ]_ A /\ y = [_ z / x ]_ B ) ) ) |
| 20 |
12 17 19
|
cbvexv1 |
|- ( E. x ( x e. A /\ y = B ) <-> E. z ( z e. [_ z / x ]_ A /\ y = [_ z / x ]_ B ) ) |
| 21 |
11 20
|
bitri |
|- ( E. x e. A y = B <-> E. z ( z e. [_ z / x ]_ A /\ y = [_ z / x ]_ B ) ) |
| 22 |
|
eqeq1 |
|- ( y = B -> ( y = [_ z / x ]_ B <-> B = [_ z / x ]_ B ) ) |
| 23 |
22
|
anbi2d |
|- ( y = B -> ( ( z e. [_ z / x ]_ A /\ y = [_ z / x ]_ B ) <-> ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) ) ) |
| 24 |
23
|
exbidv |
|- ( y = B -> ( E. z ( z e. [_ z / x ]_ A /\ y = [_ z / x ]_ B ) <-> E. z ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) ) ) |
| 25 |
21 24
|
bitrid |
|- ( y = B -> ( E. x e. A y = B <-> E. z ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) ) ) |
| 26 |
1
|
rnmpt |
|- ran F = { y | E. x e. A y = B } |
| 27 |
25 26
|
elab2g |
|- ( B e. V -> ( B e. ran F <-> E. z ( z e. [_ z / x ]_ A /\ B = [_ z / x ]_ B ) ) ) |
| 28 |
10 27
|
imbitrrid |
|- ( B e. V -> ( x e. A -> B e. ran F ) ) |
| 29 |
28
|
impcom |
|- ( ( x e. A /\ B e. V ) -> B e. ran F ) |