Metamath Proof Explorer


Theorem elrnmpt1s

Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses rnmpt.1
|- F = ( x e. A |-> B )
elrnmpt1s.1
|- ( x = D -> B = C )
Assertion elrnmpt1s
|- ( ( D e. A /\ C e. V ) -> C e. ran F )

Proof

Step Hyp Ref Expression
1 rnmpt.1
 |-  F = ( x e. A |-> B )
2 elrnmpt1s.1
 |-  ( x = D -> B = C )
3 eqid
 |-  C = C
4 2 rspceeqv
 |-  ( ( D e. A /\ C = C ) -> E. x e. A C = B )
5 3 4 mpan2
 |-  ( D e. A -> E. x e. A C = B )
6 1 elrnmpt
 |-  ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) )
7 6 biimparc
 |-  ( ( E. x e. A C = B /\ C e. V ) -> C e. ran F )
8 5 7 sylan
 |-  ( ( D e. A /\ C e. V ) -> C e. ran F )