Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmpt.1 | |- F = ( x e. A |-> B ) |
|
| elrnmpt1s.1 | |- ( x = D -> B = C ) |
||
| Assertion | elrnmpt1s | |- ( ( D e. A /\ C e. V ) -> C e. ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt.1 | |- F = ( x e. A |-> B ) |
|
| 2 | elrnmpt1s.1 | |- ( x = D -> B = C ) |
|
| 3 | eqid | |- C = C |
|
| 4 | 2 | rspceeqv | |- ( ( D e. A /\ C = C ) -> E. x e. A C = B ) |
| 5 | 3 4 | mpan2 | |- ( D e. A -> E. x e. A C = B ) |
| 6 | 1 | elrnmpt | |- ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) ) |
| 7 | 6 | biimparc | |- ( ( E. x e. A C = B /\ C e. V ) -> C e. ran F ) |
| 8 | 5 7 | sylan | |- ( ( D e. A /\ C e. V ) -> C e. ran F ) |