Description: Elementhood in an image set. Same as elrnmpt1s , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elrnmpt1sf.1 | |- F/_ x C |
|
elrnmpt1sf.2 | |- F = ( x e. A |-> B ) |
||
elrnmpt1sf.3 | |- ( x = D -> B = C ) |
||
Assertion | elrnmpt1sf | |- ( ( D e. A /\ C e. V ) -> C e. ran F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpt1sf.1 | |- F/_ x C |
|
2 | elrnmpt1sf.2 | |- F = ( x e. A |-> B ) |
|
3 | elrnmpt1sf.3 | |- ( x = D -> B = C ) |
|
4 | eqid | |- C = C |
|
5 | 1 1 | nfeq | |- F/ x C = C |
6 | 3 | eqeq2d | |- ( x = D -> ( C = B <-> C = C ) ) |
7 | 5 6 | rspce | |- ( ( D e. A /\ C = C ) -> E. x e. A C = B ) |
8 | 4 7 | mpan2 | |- ( D e. A -> E. x e. A C = B ) |
9 | 1 2 | elrnmptf | |- ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) ) |
10 | 9 | biimparc | |- ( ( E. x e. A C = B /\ C e. V ) -> C e. ran F ) |
11 | 8 10 | sylan | |- ( ( D e. A /\ C e. V ) -> C e. ran F ) |