| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elrnmpt1sf.1 | 
							 |-  F/_ x C  | 
						
						
							| 2 | 
							
								
							 | 
							elrnmpt1sf.2 | 
							 |-  F = ( x e. A |-> B )  | 
						
						
							| 3 | 
							
								
							 | 
							elrnmpt1sf.3 | 
							 |-  ( x = D -> B = C )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  C = C  | 
						
						
							| 5 | 
							
								1 1
							 | 
							nfeq | 
							 |-  F/ x C = C  | 
						
						
							| 6 | 
							
								3
							 | 
							eqeq2d | 
							 |-  ( x = D -> ( C = B <-> C = C ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							rspce | 
							 |-  ( ( D e. A /\ C = C ) -> E. x e. A C = B )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							mpan2 | 
							 |-  ( D e. A -> E. x e. A C = B )  | 
						
						
							| 9 | 
							
								1 2
							 | 
							elrnmptf | 
							 |-  ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biimparc | 
							 |-  ( ( E. x e. A C = B /\ C e. V ) -> C e. ran F )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							sylan | 
							 |-  ( ( D e. A /\ C e. V ) -> C e. ran F )  |