Metamath Proof Explorer


Theorem elrnmpt2d

Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses elrnmpt2d.1
|- F = ( x e. A |-> B )
elrnmpt2d.2
|- ( ph -> C e. ran F )
Assertion elrnmpt2d
|- ( ph -> E. x e. A C = B )

Proof

Step Hyp Ref Expression
1 elrnmpt2d.1
 |-  F = ( x e. A |-> B )
2 elrnmpt2d.2
 |-  ( ph -> C e. ran F )
3 1 elrnmpt
 |-  ( C e. ran F -> ( C e. ran F <-> E. x e. A C = B ) )
4 3 ibi
 |-  ( C e. ran F -> E. x e. A C = B )
5 2 4 syl
 |-  ( ph -> E. x e. A C = B )