Metamath Proof Explorer


Theorem elrnmptf

Description: The range of a function in maps-to notation. Same as elrnmpt , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses elrnmptf.1
|- F/_ x C
elrnmptf.2
|- F = ( x e. A |-> B )
Assertion elrnmptf
|- ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) )

Proof

Step Hyp Ref Expression
1 elrnmptf.1
 |-  F/_ x C
2 elrnmptf.2
 |-  F = ( x e. A |-> B )
3 1 nfeq2
 |-  F/ x y = C
4 eqeq1
 |-  ( y = C -> ( y = B <-> C = B ) )
5 3 4 rexbid
 |-  ( y = C -> ( E. x e. A y = B <-> E. x e. A C = B ) )
6 2 rnmpt
 |-  ran F = { y | E. x e. A y = B }
7 5 6 elab2g
 |-  ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) )