Metamath Proof Explorer


Theorem elrnres

Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018)

Ref Expression
Assertion elrnres
|- ( B e. V -> ( B e. ran ( R |` A ) <-> E. x e. A x R B ) )

Proof

Step Hyp Ref Expression
1 elrng
 |-  ( B e. V -> ( B e. ran ( R |` A ) <-> E. x x ( R |` A ) B ) )
2 brres
 |-  ( B e. V -> ( x ( R |` A ) B <-> ( x e. A /\ x R B ) ) )
3 2 exbidv
 |-  ( B e. V -> ( E. x x ( R |` A ) B <-> E. x ( x e. A /\ x R B ) ) )
4 1 3 bitrd
 |-  ( B e. V -> ( B e. ran ( R |` A ) <-> E. x ( x e. A /\ x R B ) ) )
5 df-rex
 |-  ( E. x e. A x R B <-> E. x ( x e. A /\ x R B ) )
6 4 5 bitr4di
 |-  ( B e. V -> ( B e. ran ( R |` A ) <-> E. x e. A x R B ) )