| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|- ( Y e. ran F -> Y = Y ) |
| 2 |
1
|
ancli |
|- ( Y e. ran F -> ( Y e. ran F /\ Y = Y ) ) |
| 3 |
2
|
adantl |
|- ( ( Fun F /\ Y e. ran F ) -> ( Y e. ran F /\ Y = Y ) ) |
| 4 |
|
eqeq2 |
|- ( y = Y -> ( Y = y <-> Y = Y ) ) |
| 5 |
4
|
rspcev |
|- ( ( Y e. ran F /\ Y = Y ) -> E. y e. ran F Y = y ) |
| 6 |
3 5
|
syl |
|- ( ( Fun F /\ Y e. ran F ) -> E. y e. ran F Y = y ) |
| 7 |
6
|
ex |
|- ( Fun F -> ( Y e. ran F -> E. y e. ran F Y = y ) ) |
| 8 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 9 |
|
eqeq2 |
|- ( y = ( F ` x ) -> ( Y = y <-> Y = ( F ` x ) ) ) |
| 10 |
9
|
rexrn |
|- ( F Fn dom F -> ( E. y e. ran F Y = y <-> E. x e. dom F Y = ( F ` x ) ) ) |
| 11 |
8 10
|
sylbi |
|- ( Fun F -> ( E. y e. ran F Y = y <-> E. x e. dom F Y = ( F ` x ) ) ) |
| 12 |
7 11
|
sylibd |
|- ( Fun F -> ( Y e. ran F -> E. x e. dom F Y = ( F ` x ) ) ) |