Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | elrnrexdmb | |- ( Fun F -> ( Y e. ran F <-> E. x e. dom F Y = ( F ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
2 | fvelrnb | |- ( F Fn dom F -> ( Y e. ran F <-> E. x e. dom F ( F ` x ) = Y ) ) |
|
3 | 1 2 | sylbi | |- ( Fun F -> ( Y e. ran F <-> E. x e. dom F ( F ` x ) = Y ) ) |
4 | eqcom | |- ( Y = ( F ` x ) <-> ( F ` x ) = Y ) |
|
5 | 4 | rexbii | |- ( E. x e. dom F Y = ( F ` x ) <-> E. x e. dom F ( F ` x ) = Y ) |
6 | 3 5 | bitr4di | |- ( Fun F -> ( Y e. ran F <-> E. x e. dom F Y = ( F ` x ) ) ) |