Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
|- ( U e. ( UnifOn ` X ) -> X e. dom UnifOn ) |
2 |
|
fveq2 |
|- ( x = X -> ( UnifOn ` x ) = ( UnifOn ` X ) ) |
3 |
2
|
eleq2d |
|- ( x = X -> ( U e. ( UnifOn ` x ) <-> U e. ( UnifOn ` X ) ) ) |
4 |
3
|
rspcev |
|- ( ( X e. dom UnifOn /\ U e. ( UnifOn ` X ) ) -> E. x e. dom UnifOn U e. ( UnifOn ` x ) ) |
5 |
1 4
|
mpancom |
|- ( U e. ( UnifOn ` X ) -> E. x e. dom UnifOn U e. ( UnifOn ` x ) ) |
6 |
|
ustfn |
|- UnifOn Fn _V |
7 |
|
fnfun |
|- ( UnifOn Fn _V -> Fun UnifOn ) |
8 |
|
elunirn |
|- ( Fun UnifOn -> ( U e. U. ran UnifOn <-> E. x e. dom UnifOn U e. ( UnifOn ` x ) ) ) |
9 |
6 7 8
|
mp2b |
|- ( U e. U. ran UnifOn <-> E. x e. dom UnifOn U e. ( UnifOn ` x ) ) |
10 |
5 9
|
sylibr |
|- ( U e. ( UnifOn ` X ) -> U e. U. ran UnifOn ) |