Metamath Proof Explorer


Theorem elrpd

Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses elrpd.1
|- ( ph -> A e. RR )
elrpd.2
|- ( ph -> 0 < A )
Assertion elrpd
|- ( ph -> A e. RR+ )

Proof

Step Hyp Ref Expression
1 elrpd.1
 |-  ( ph -> A e. RR )
2 elrpd.2
 |-  ( ph -> 0 < A )
3 elrp
 |-  ( A e. RR+ <-> ( A e. RR /\ 0 < A ) )
4 1 2 3 sylanbrc
 |-  ( ph -> A e. RR+ )