| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elrspsn.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | elrspsn.2 |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | elrspsn.3 |  |-  K = ( RSpan ` R ) | 
						
							| 4 |  | rlmlmod |  |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | 
						
							| 5 |  | simpr |  |-  ( ( R e. Ring /\ X e. B ) -> X e. B ) | 
						
							| 6 | 5 1 | eleqtrdi |  |-  ( ( R e. Ring /\ X e. B ) -> X e. ( Base ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) = ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) | 
						
							| 9 |  | rlmbas |  |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | 
						
							| 10 |  | rlmvsca |  |-  ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) | 
						
							| 11 | 2 10 | eqtri |  |-  .x. = ( .s ` ( ringLMod ` R ) ) | 
						
							| 12 |  | rspval |  |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) | 
						
							| 13 | 3 12 | eqtri |  |-  K = ( LSpan ` ( ringLMod ` R ) ) | 
						
							| 14 | 7 8 9 11 13 | ellspsn |  |-  ( ( ( ringLMod ` R ) e. LMod /\ X e. ( Base ` R ) ) -> ( I e. ( K ` { X } ) <-> E. x e. ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) I = ( x .x. X ) ) ) | 
						
							| 15 | 4 6 14 | syl2an2r |  |-  ( ( R e. Ring /\ X e. B ) -> ( I e. ( K ` { X } ) <-> E. x e. ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) I = ( x .x. X ) ) ) | 
						
							| 16 |  | rlmsca |  |-  ( R e. Ring -> R = ( Scalar ` ( ringLMod ` R ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( R e. Ring /\ X e. B ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( R e. Ring /\ X e. B ) -> ( Base ` R ) = ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) ) | 
						
							| 19 | 1 18 | eqtr2id |  |-  ( ( R e. Ring /\ X e. B ) -> ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) = B ) | 
						
							| 20 | 19 | rexeqdv |  |-  ( ( R e. Ring /\ X e. B ) -> ( E. x e. ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) I = ( x .x. X ) <-> E. x e. B I = ( x .x. X ) ) ) | 
						
							| 21 | 15 20 | bitrd |  |-  ( ( R e. Ring /\ X e. B ) -> ( I e. ( K ` { X } ) <-> E. x e. B I = ( x .x. X ) ) ) |