Metamath Proof Explorer


Theorem elsb3

Description: Substitution applied to an atomic membership wff. (Contributed by NM, 7-Nov-2006) (Proof shortened by Andrew Salmon, 14-Jun-2011) Reduce axiom usage. (Revised by Wolf Lammen, 24-Jul-2023)

Ref Expression
Assertion elsb3
|- ( [ y / x ] x e. z <-> y e. z )

Proof

Step Hyp Ref Expression
1 elequ1
 |-  ( x = w -> ( x e. z <-> w e. z ) )
2 elequ1
 |-  ( w = y -> ( w e. z <-> y e. z ) )
3 1 2 sbievw2
 |-  ( [ y / x ] x e. z <-> y e. z )