Description: A morphism of sets is a function. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcbas.c | |- C = ( SetCat ` U ) |
|
| setcbas.u | |- ( ph -> U e. V ) |
||
| setchomfval.h | |- H = ( Hom ` C ) |
||
| setchom.x | |- ( ph -> X e. U ) |
||
| setchom.y | |- ( ph -> Y e. U ) |
||
| Assertion | elsetchom | |- ( ph -> ( F e. ( X H Y ) <-> F : X --> Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | |- C = ( SetCat ` U ) |
|
| 2 | setcbas.u | |- ( ph -> U e. V ) |
|
| 3 | setchomfval.h | |- H = ( Hom ` C ) |
|
| 4 | setchom.x | |- ( ph -> X e. U ) |
|
| 5 | setchom.y | |- ( ph -> Y e. U ) |
|
| 6 | 1 2 3 4 5 | setchom | |- ( ph -> ( X H Y ) = ( Y ^m X ) ) |
| 7 | 6 | eleq2d | |- ( ph -> ( F e. ( X H Y ) <-> F e. ( Y ^m X ) ) ) |
| 8 | 5 4 | elmapd | |- ( ph -> ( F e. ( Y ^m X ) <-> F : X --> Y ) ) |
| 9 | 7 8 | bitrd | |- ( ph -> ( F e. ( X H Y ) <-> F : X --> Y ) ) |