Metamath Proof Explorer


Theorem elsn2g

Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. This variation requires only that B , rather than A , be a set. (Contributed by NM, 28-Oct-2003)

Ref Expression
Assertion elsn2g
|- ( B e. V -> ( A e. { B } <-> A = B ) )

Proof

Step Hyp Ref Expression
1 elsni
 |-  ( A e. { B } -> A = B )
2 snidg
 |-  ( B e. V -> B e. { B } )
3 eleq1
 |-  ( A = B -> ( A e. { B } <-> B e. { B } ) )
4 2 3 syl5ibrcom
 |-  ( B e. V -> ( A = B -> A e. { B } ) )
5 1 4 impbid2
 |-  ( B e. V -> ( A e. { B } <-> A = B ) )