Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. This variation requires only that B , rather than A , be a set. (Contributed by NM, 28-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | elsn2g | |- ( B e. V -> ( A e. { B } <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni | |- ( A e. { B } -> A = B ) |
|
2 | snidg | |- ( B e. V -> B e. { B } ) |
|
3 | eleq1 | |- ( A = B -> ( A e. { B } <-> B e. { B } ) ) |
|
4 | 2 3 | syl5ibrcom | |- ( B e. V -> ( A = B -> A e. { B } ) ) |
5 | 1 4 | impbid2 | |- ( B e. V -> ( A e. { B } <-> A = B ) ) |