Metamath Proof Explorer


Theorem elspani

Description: Membership in the span of a subset of Hilbert space. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis elspan.1
|- B e. _V
Assertion elspani
|- ( A C_ ~H -> ( B e. ( span ` A ) <-> A. x e. SH ( A C_ x -> B e. x ) ) )

Proof

Step Hyp Ref Expression
1 elspan.1
 |-  B e. _V
2 spanval
 |-  ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } )
3 2 eleq2d
 |-  ( A C_ ~H -> ( B e. ( span ` A ) <-> B e. |^| { x e. SH | A C_ x } ) )
4 1 elintrab
 |-  ( B e. |^| { x e. SH | A C_ x } <-> A. x e. SH ( A C_ x -> B e. x ) )
5 3 4 bitrdi
 |-  ( A C_ ~H -> ( B e. ( span ` A ) <-> A. x e. SH ( A C_ x -> B e. x ) ) )