Description: Membership in the span of a subset of Hilbert space. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elspan.1 | |- B e. _V |
|
Assertion | elspani | |- ( A C_ ~H -> ( B e. ( span ` A ) <-> A. x e. SH ( A C_ x -> B e. x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elspan.1 | |- B e. _V |
|
2 | spanval | |- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
|
3 | 2 | eleq2d | |- ( A C_ ~H -> ( B e. ( span ` A ) <-> B e. |^| { x e. SH | A C_ x } ) ) |
4 | 1 | elintrab | |- ( B e. |^| { x e. SH | A C_ x } <-> A. x e. SH ( A C_ x -> B e. x ) ) |
5 | 3 4 | bitrdi | |- ( A C_ ~H -> ( B e. ( span ` A ) <-> A. x e. SH ( A C_ x -> B e. x ) ) ) |