Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (Contributed by NM, 16-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elspansn3 | |- ( ( A e. SH /\ B e. A /\ C e. ( span ` { B } ) ) -> C e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnss | |- ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A ) |
|
2 | 1 | sseld | |- ( ( A e. SH /\ B e. A ) -> ( C e. ( span ` { B } ) -> C e. A ) ) |
3 | 2 | 3impia | |- ( ( A e. SH /\ B e. A /\ C e. ( span ` { B } ) ) -> C e. A ) |