Metamath Proof Explorer


Theorem elspansn3

Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (Contributed by NM, 16-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn3
|- ( ( A e. SH /\ B e. A /\ C e. ( span ` { B } ) ) -> C e. A )

Proof

Step Hyp Ref Expression
1 spansnss
 |-  ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A )
2 1 sseld
 |-  ( ( A e. SH /\ B e. A ) -> ( C e. ( span ` { B } ) -> C e. A ) )
3 2 3impia
 |-  ( ( A e. SH /\ B e. A /\ C e. ( span ` { B } ) ) -> C e. A )