Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (Contributed by NM, 16-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn3 | |- ( ( A e. SH /\ B e. A /\ C e. ( span ` { B } ) ) -> C e. A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansnss |  |-  ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A ) | |
| 2 | 1 | sseld |  |-  ( ( A e. SH /\ B e. A ) -> ( C e. ( span ` { B } ) -> C e. A ) ) | 
| 3 | 2 | 3impia |  |-  ( ( A e. SH /\ B e. A /\ C e. ( span ` { B } ) ) -> C e. A ) |