Description: Membership in the span of a singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spansn.1 | |- A e. ~H | |
| Assertion | elspansni | |- ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansn.1 | |- A e. ~H | |
| 2 | 1 | spansni |  |-  ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) | 
| 3 | 2 | eleq2i |  |-  ( B e. ( span ` { A } ) <-> B e. ( _|_ ` ( _|_ ` { A } ) ) ) | 
| 4 | 1 | h1de2ci |  |-  ( B e. ( _|_ ` ( _|_ ` { A } ) ) <-> E. x e. CC B = ( x .h A ) ) | 
| 5 | 3 4 | bitri |  |-  ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) ) |