Metamath Proof Explorer


Theorem elspansni

Description: Membership in the span of a singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis spansn.1
|- A e. ~H
Assertion elspansni
|- ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) )

Proof

Step Hyp Ref Expression
1 spansn.1
 |-  A e. ~H
2 1 spansni
 |-  ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) )
3 2 eleq2i
 |-  ( B e. ( span ` { A } ) <-> B e. ( _|_ ` ( _|_ ` { A } ) ) )
4 1 h1de2ci
 |-  ( B e. ( _|_ ` ( _|_ ` { A } ) ) <-> E. x e. CC B = ( x .h A ) )
5 3 4 bitri
 |-  ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) )