Description: Membership in the span of a singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | spansn.1 | |- A e. ~H |
|
Assertion | elspansni | |- ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansn.1 | |- A e. ~H |
|
2 | 1 | spansni | |- ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) |
3 | 2 | eleq2i | |- ( B e. ( span ` { A } ) <-> B e. ( _|_ ` ( _|_ ` { A } ) ) ) |
4 | 1 | h1de2ci | |- ( B e. ( _|_ ` ( _|_ ` { A } ) ) <-> E. x e. CC B = ( x .h A ) ) |
5 | 3 4 | bitri | |- ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) ) |