Step |
Hyp |
Ref |
Expression |
1 |
|
elssabg.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
ssexg |
|- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
3 |
2
|
expcom |
|- ( B e. V -> ( A C_ B -> A e. _V ) ) |
4 |
3
|
adantrd |
|- ( B e. V -> ( ( A C_ B /\ ps ) -> A e. _V ) ) |
5 |
|
sseq1 |
|- ( x = A -> ( x C_ B <-> A C_ B ) ) |
6 |
5 1
|
anbi12d |
|- ( x = A -> ( ( x C_ B /\ ph ) <-> ( A C_ B /\ ps ) ) ) |
7 |
6
|
elab3g |
|- ( ( ( A C_ B /\ ps ) -> A e. _V ) -> ( A e. { x | ( x C_ B /\ ph ) } <-> ( A C_ B /\ ps ) ) ) |
8 |
4 7
|
syl |
|- ( B e. V -> ( A e. { x | ( x C_ B /\ ph ) } <-> ( A C_ B /\ ps ) ) ) |