Metamath Proof Explorer


Theorem elsuc2

Description: Membership in a successor. (Contributed by NM, 15-Sep-2003)

Ref Expression
Hypothesis elsuc.1
|- A e. _V
Assertion elsuc2
|- ( B e. suc A <-> ( B e. A \/ B = A ) )

Proof

Step Hyp Ref Expression
1 elsuc.1
 |-  A e. _V
2 elsuc2g
 |-  ( A e. _V -> ( B e. suc A <-> ( B e. A \/ B = A ) ) )
3 1 2 ax-mp
 |-  ( B e. suc A <-> ( B e. A \/ B = A ) )