Description: Membership in a successor. This one-way implication does not require that either A or B be sets. (Contributed by NM, 6-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | elsuci | |- ( A e. suc B -> ( A e. B \/ A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc | |- suc B = ( B u. { B } ) |
|
2 | 1 | eleq2i | |- ( A e. suc B <-> A e. ( B u. { B } ) ) |
3 | elun | |- ( A e. ( B u. { B } ) <-> ( A e. B \/ A e. { B } ) ) |
|
4 | 2 3 | bitri | |- ( A e. suc B <-> ( A e. B \/ A e. { B } ) ) |
5 | elsni | |- ( A e. { B } -> A = B ) |
|
6 | 5 | orim2i | |- ( ( A e. B \/ A e. { B } ) -> ( A e. B \/ A = B ) ) |
7 | 4 6 | sylbi | |- ( A e. suc B -> ( A e. B \/ A = B ) ) |