Step |
Hyp |
Ref |
Expression |
1 |
|
suppvalfng |
|- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |
2 |
1
|
eleq2d |
|- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( S e. ( F supp Z ) <-> S e. { i e. X | ( F ` i ) =/= Z } ) ) |
3 |
|
fveq2 |
|- ( i = S -> ( F ` i ) = ( F ` S ) ) |
4 |
3
|
neeq1d |
|- ( i = S -> ( ( F ` i ) =/= Z <-> ( F ` S ) =/= Z ) ) |
5 |
4
|
elrab |
|- ( S e. { i e. X | ( F ` i ) =/= Z } <-> ( S e. X /\ ( F ` S ) =/= Z ) ) |
6 |
2 5
|
bitrdi |
|- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( S e. ( F supp Z ) <-> ( S e. X /\ ( F ` S ) =/= Z ) ) ) |