| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							suppvalfng | 
							 |-  ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) | 
						
						
							| 2 | 
							
								1
							 | 
							eleq2d | 
							 |-  ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( S e. ( F supp Z ) <-> S e. { i e. X | ( F ` i ) =/= Z } ) ) | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = S -> ( F ` i ) = ( F ` S ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							neeq1d | 
							 |-  ( i = S -> ( ( F ` i ) =/= Z <-> ( F ` S ) =/= Z ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							elrab | 
							 |-  ( S e. { i e. X | ( F ` i ) =/= Z } <-> ( S e. X /\ ( F ` S ) =/= Z ) ) | 
						
						
							| 6 | 
							
								2 5
							 | 
							bitrdi | 
							 |-  ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( S e. ( F supp Z ) <-> ( S e. X /\ ( F ` S ) =/= Z ) ) )  |