Step |
Hyp |
Ref |
Expression |
1 |
|
symgbas.1 |
|- G = ( SymGrp ` A ) |
2 |
|
symgbas.2 |
|- B = ( Base ` G ) |
3 |
|
elex |
|- ( F e. B -> F e. _V ) |
4 |
3
|
a1i |
|- ( A e. V -> ( F e. B -> F e. _V ) ) |
5 |
|
f1of |
|- ( F : A -1-1-onto-> A -> F : A --> A ) |
6 |
|
fex |
|- ( ( F : A --> A /\ A e. V ) -> F e. _V ) |
7 |
6
|
expcom |
|- ( A e. V -> ( F : A --> A -> F e. _V ) ) |
8 |
5 7
|
syl5 |
|- ( A e. V -> ( F : A -1-1-onto-> A -> F e. _V ) ) |
9 |
1 2
|
elsymgbas2 |
|- ( F e. _V -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
10 |
9
|
a1i |
|- ( A e. V -> ( F e. _V -> ( F e. B <-> F : A -1-1-onto-> A ) ) ) |
11 |
4 8 10
|
pm5.21ndd |
|- ( A e. V -> ( F e. B <-> F : A -1-1-onto-> A ) ) |