| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgbas.1 |
|- G = ( SymGrp ` A ) |
| 2 |
|
symgbas.2 |
|- B = ( Base ` G ) |
| 3 |
|
elex |
|- ( F e. B -> F e. _V ) |
| 4 |
3
|
a1i |
|- ( A e. V -> ( F e. B -> F e. _V ) ) |
| 5 |
|
f1of |
|- ( F : A -1-1-onto-> A -> F : A --> A ) |
| 6 |
|
fex |
|- ( ( F : A --> A /\ A e. V ) -> F e. _V ) |
| 7 |
6
|
expcom |
|- ( A e. V -> ( F : A --> A -> F e. _V ) ) |
| 8 |
5 7
|
syl5 |
|- ( A e. V -> ( F : A -1-1-onto-> A -> F e. _V ) ) |
| 9 |
1 2
|
elsymgbas2 |
|- ( F e. _V -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
| 10 |
9
|
a1i |
|- ( A e. V -> ( F e. _V -> ( F e. B <-> F : A -1-1-onto-> A ) ) ) |
| 11 |
4 8 10
|
pm5.21ndd |
|- ( A e. V -> ( F e. B <-> F : A -1-1-onto-> A ) ) |