Metamath Proof Explorer


Theorem elsymgbas2

Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgbas.1
|- G = ( SymGrp ` A )
symgbas.2
|- B = ( Base ` G )
Assertion elsymgbas2
|- ( F e. V -> ( F e. B <-> F : A -1-1-onto-> A ) )

Proof

Step Hyp Ref Expression
1 symgbas.1
 |-  G = ( SymGrp ` A )
2 symgbas.2
 |-  B = ( Base ` G )
3 f1oeq1
 |-  ( x = F -> ( x : A -1-1-onto-> A <-> F : A -1-1-onto-> A ) )
4 1 2 symgbas
 |-  B = { x | x : A -1-1-onto-> A }
5 3 4 elab2g
 |-  ( F e. V -> ( F e. B <-> F : A -1-1-onto-> A ) )