Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsymrels2 | |- ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsymrels2 |  |-  SymRels = { r e. Rels | `' r C_ r } | 
						|
| 2 | cnveq | |- ( r = R -> `' r = `' R )  | 
						|
| 3 | id | |- ( r = R -> r = R )  | 
						|
| 4 | 2 3 | sseq12d | |- ( r = R -> ( `' r C_ r <-> `' R C_ R ) )  | 
						
| 5 | 1 4 | rabeqel | |- ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) )  |